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Intelligent Telerobotic Assistance for Enhancing Manipulation Capabilities of 

Persons with Disabilities 

Wentao Yu 

ABSTRACT 

This dissertation addresses the development of a telemanipulation system using 

intelligent mapping from a haptic user interface to a remote manipulator to assist in 

maximizing the manipulation capabilities of persons with disabilities. This mapping, 

referred to as assistance function, is determined on the basis of environmental model or 

real-time sensory data to guide the motion of a telerobotic manipulator while performing 

a given task. Human input is enhanced rather than superseded by the computer. This is 

particularly useful when the user has restricted range of movements due to certain 

disabilities such as muscular dystrophy, a stroke, or any form of pathological tremor.  

In telemanipulation system, assistance of variable position/velocity mapping or 

virtual fixture can improve manipulation capability and dexterity.  Conventionally, these 

assistances are based on the environmental information, without knowing user’s motion 

intention. In this dissertation, user’s motion intention is combined with real-time 

environmental information for applying appropriate assistance. If the current task is 

following a path, a virtual fixture orthogonal to the path is applied.  Similarly, if the task 

is to align the end-effector with a target, an attractive force field is generated. In order to 

successfully recognize user’s motion intention, a Hidden Markov Model (HMM) is 

developed. 
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This dissertation also describes the HMM based skill learning and its application 

in a motion therapy system in which motion along a labyrinth is controlled using a haptic 

interface. Two persons with disabilities on upper limb are trained using this virtual 

therapist. The performance measures before and after the therapy training, including the 

smoothness of the trajectory, distance ratio, time taken, tremor and impact forces are 

presented.  

The results demonstrate that various forms of assistance provided reduced the 

execution times and increased the performance of the chosen tasks for the disabled 

individuals. In addition, these results suggest that the introduction of the haptic rendering 

capabilities, including the force feedback, offers special benefit to motion-impaired users 

by augmenting their performance on job related tasks. 
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Chapter 1:  Introduction 

1.1. Motivation   

Physical disabilities make it difficult or sometimes impossible for individuals to 

perform several simple job related tasks such as pressing a button to operate a machine, 

moving light objects etc. While considering employment, the true potential of individuals 

with disabilities can be enhanced by technology to augment human performance.  New 

developments in telerobotic systems can allow greater number of individuals with 

disabilities to compensate for their lost manipulation skills. In the past two decades, 

researchers in rehabilitation robotics have designed and developed a variety of 

passive/active devices to help persons with limited upper-limb functions to perform 

essential daily manipulation tasks.  Since the user is inside the control loop, most of these 

research or commercial products have adopted telemanipulation system, in which the user 

issues robot motion commands through an interface [3]. However, practical results are 

limited, mainly due to the fact that although telemanipulation may relieve the user of the 

physical burden of manipulative tasks, it introduces the mental burden of controlling the 

input device [4].  With typical telemanipulation, the user is in the control loop, sensing 

the environment information such as the location and the distance of the target and 

providing the appropriate control signal to the input device.  In literature [84], after 

training all operators for a certain time (normal subjects), only 60% of them were skilled 

enough to complete teleoperation tasks. A general method for introducing computer 
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assistance in task execution without overriding an operator’s command to the 

manipulator is used.  The appropriate movement for the task is kept or even enhanced, 

but the undesirable movements are reduced. This is done using assist functions, which 

scale the input velocity according to the task. This methodology has been previously 

employed by the author in the execution of manual dexterity assessment tasks with fully 

able individuals [53]. 

Beside this functional approach in rehabilitation, robotics applications can also 

assist clinically in therapy.  Much evidence suggests that intensive therapy improves 

movement recovery. But such therapy is expensive, because it requires therapists on a 

person-to-person basis.  Recently there has been increased interest in restoring functions 

through robot-aided therapy.   This approach is to design therapy platform to substitute 

some of the therapist’s work. 

 

1.2. Dissertation Objective   

The goal of this dissertation is to design an intelligent telerobotic system that can 

maximize the manipulation capabilities and reduce the mental burden for persons with 

disabilities on the upper- limb:   

1. Develop sensor-based assistance functions to increase the limited motion 

range and enhance manipulation accuracy.  

2. Implement these assist functions to perform a common vocational 

rehabilitation test referred to as a Box and Blocks. During task operation, 

adjust the scaling according to the available sensory data. 
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3. Develop an algorithm to recognize operator’s motion intention by using 

Hidden Markov Model (HMM).  Apply appropriate fixture assistance 

based on operator’s motion. If the recognized motion is following a path, a 

virtual fixture orthogonal to the path is applied.  If the task is to align the 

end-effector with a target, an attractive force field is generated. Similarly, 

if the task is to avoid obstacles, a repulsive force field is produced.   

4. Develop a robotic therapy system based on skill learning through Hidden 

Markov Model.  Since HMM is feasible to model a stochastic process, 

such as speech or a certain assembly skill, it can be used to characterize 

the skill of moving along a labyrinth path.  The skill of moving along a 

labyrinth is learned and considered as a virtual therapist, which replaces 

the role of a physical therapist for motion therapy. Perform motion 

experiments with two subjects with disabilities. 

The contribution of this dissertation is that telerobotic system with intelligent 

operation can enhance the manipulation capabilities and reduce the mental burden, and 

learned skill of a specific task can be used as a robotic therapist to do motion therapy. 

 

1.3. Dissertation Outline   

The history and the background of rehabilitation robotics and telemanipulation 

system areas related to this work are discussed in chapter 2.  The concept of rehabilitation 

robotics, haptic interface and teleoperation assistance are traced through history to the 

present state of knowledge in these areas. Chapter 3 describes a telemanipulation system 

to assist persons with disabilities perform dexterous manipulation tasks. In this chapter, 
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assistance functions are used for mapping such that human input is enhanced and “Box 

and Blocks” is chosen to test the effectiveness of this sensor-based assistance function. 

The Hidden Markov Model (HMM)-based human motion intention recognition is 

developed in chapter 4 and then the implementation of appropriate virtual fixture 

assistance is applied to teleoperation. Chapter 5 describes the Hidden Markov Model 

based skill learning and its application in motion therapy system using a haptic interface.  

Chapter 6 concludes with a discussion of the experimental results, and suggested future 

work. 
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Chapter 2:  Background 

2.1. Rehabilitation Robotics  

Physical and cognitive disabilities make it difficult or impossible for individuals 

to perform several simple work and household tasks such as pressing a button to operate 

a machine, opening a door, moving light objects etc.  A study by J. Schuyler et al 

concluded that a slight increase in manipulation ability, mobility and strength results in 

substantial increase in the number of jobs for which an individual might be eligible  [31].  

In many instances, such enhancements may mean the ability to do a task that the person 

is otherwise unable to perform.  Assistive devices have attempted to fully or partially 

restore the lost functions and enable people with disabilities to perform many Activities 

of Daily Life (ADL) affecting their employment and quality of life [1, 7, 3, 4, 17].  

The earliest research in this area (prosthetics and robotic arms) began in the late 

1960s [2].  The Rancho “Golden” arm, developed at Rancho Los Amigos Hospital in 

Downey, California in 1969 was the first successful rehabilitation robot manipulator [32].  

It used seven tongue switches in a sequential mode to successfully maneuver the arm in 

space. Johns Hopkins arm [1, 5], evolved from prosthetics, could execute tasks in pre-

programmed and direct modes through a chin manipulandum and other body-powered 

switches.  The Heidelberg Manipulator was the earliest example of the workstation-based 

approach to the implementation of robotic systems [6, 7].  Spartacus project proposed that 

mounting a manipulator arm on a wheelchair would increase the effectiveness of 
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manipulation rehabilitation [8, 9].  Though all these assistive devices saw limited use by 

consumers, they established the foundation for further research.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1 RAID Workstation 

Figure 2.2 Manus Manipulator 
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Since the 1980’s, considerable progress has been made in the field of 

rehabilitation robotics technology.  One example is the workstation robotic device.  The 

goal of a workstation robotic device is to enable the user to perform tasks typically 

encountered in office or at home.  These tasks include moving books from a shelf to a 

reading board, opening the book and flipping through its pages, inserting CD-ROMs and 

floppy diskettes into a computer.  The most commonly used robotic workstation available 

to users with disabilities is the RAID (Robot for Assisting the Integration of the Disabled, 

Figure 2.1) workstation [12].    DEVAR (desktop assistant robot for vocational support in 

office settings) [16] can be used to handle paper, floppy disks, pick up and use the 

telephone, and retrieve medication.   RAA (Robotic Assistive Appliance) offers a human 

size manipulator at a workstation with 6 degrees of freedom with either programmed or 

direct control [17] and is currently undergoing testing to assess its advantages over an 

attendant [18].  The other kind of device is wheelchair-mounted robot. A power 

wheelchair is used as a mobile base where a mechanical manipulator can be attached. 

Several wheelchair-mounted manipulators are available to the consumer, but two in 

particular, MANUS and the Raptor, are more successful.  MANUS is the most well 

known of those successors (Figure 2.2). Raptor manipulator is the first robot assistive 

manipulator that has gained FDA approval for use in the US [35] (Figure 2.3). Because of 

its increased size, though, the range of the Raptor is 120 cm compared to the 80 cm of the 

Manus.  It can also lift up to 2.5 kg.  Another project that has enjoyed relative success is 

the Handy 1 [7,11], which was primarily used as a feeding device for children with 

cerebral palsy.  More recently, besides improving eating skills, the aid has been 

considered for other activities including application of cosmetics leisure activities [26].   
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In addition, in FRIEND Robot arm system [15], a multimedia user interface was 

included to enlarge the functionality of existing technical aids. ISAC incorporated 

Artificial Intelligence (AI) into its controller to reduce the mental load on the user during 

the performance of manipulative tasks [20].  KARES uses a SPACEBALL 2003 as an 

input device to teleoperate the robotic arm [21].   In KAREA II, an advanced version of 

KARES has a visual servo, which allows the robotic arm to operate autonomously 

through the visual feedback of a binocular camera head [28].   

The robot arm workstations or wheelchair-mounted manipulator above 

compensated for the activity deficiencies of people with disabilities.  But because of the 

high cost, the poor interface between a complex electromechanical system and a person 

Figure 2.3 Raptor Manipulator 



www.manaraa.com

 9

with limited capabilities, and social stigma attached with a robot, these assistive devices 

have had limited success as commercial products [1,3,4,7].  

Besides assistive robots, another type of rehabilitation robotic system is therapy 

robot. MIT-MANUS (Figure 2.4 (a)) is the most successful robot-aided therapy platform 

to undergo intensive clinical testing [85, 86]. This device is a planar, two-revolute-joint, 

backdriveable robotic device that attaches to the patient’s hand and forearm through a 

brace. The patient can move the robot, or the robot can move the patient, in the horizontal 

plane.  The patient receives feedback of the hand trajectory on the computer screen.   The 

results of clinical trials suggested that exercise therapy improved motor recovery [87-89]. 

 

                        

                             (a)                                                                                   (b) 

Figure 2.4   (a) MIT-MANUS[85],  (b) MIME[16] 
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MIME (Figure 2.4 (b)) is powerful enough to move a patient’s arm throughout the 

three-dimensional workspace against gravity [79].   When the patient moves her/his 

unimpaired arm, a mechanical digitizing stylus senses the movement.   The PUMA 560 

robot arm then moves the patient’s impaired arm along a mirror-symmetric trajectory.  

The result of clinical tests with MIME showed integration of robot-aided therapy into 

clinical exercise programs would allow repetitive, time- intensive exercises to be 

performed without one-to-one attentions from a therapist [16].   The ARM (Assisted 

Rehabilitation and Measurement) was designed to guide reaching movements across the 

workspace, and to measure multi-axis force generation and range of motion of the arm 

[79].   Like MIT-MANUS and MIME, the ARM device can assist or resist movements 

and can also measure hand movements.   The ARM Guide has been used to quantify and 

understand abnormal coordination, spastic reflexes, and workspace deficits after stroke 

[90].  The testing results suggested that the constraint force and range of motion 

measurements during mechanically guided movement may prove useful for precise 

monitoring of arm impairment and of the effects of treatment techniques targeted at 

abnormal synergies and workspace deficits [91, 92]. 

                        

2.2. Telerobotics  

Due to the unstructured environment of ADL and varieties of the tasks and the 

presence of the user, many rehabilitation robots adopt telerobotics systems so that users 

can issue commands through a human-machine interface [8, 11, 15, 28].  Regarding 

teleoperation studies, several types of systems and concepts have been defined in the area 

of remote manipulation technology [39].  The concept developed by Ray Goertz in the 
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1950's, in which a person's sensing and manipulation capability is extended to a remote 

location, is referred to as “teleoperation”. His mechanisms were mechanical pantograph 

devices which allowed radioactive materials to be handled at a safe distance. Later, 

electrical servos replaced mechanical linkages and cameras replaced direct viewing, so 

that the operator could be arbitrarily far away.  Human operators look at video displays, 

and operate remotely located slave robot via a hand controller. Usually the term 

teleoperation refers to systems in which the human operator directly and continuously 

controls the remote manipulator.  In these systems, the kinematic chain which is 

manipulated by the operator and may provide force feedback is referred to as the 

“master”, while the remote manipulator is referred to as the “slave”.    

From the point of view of autonomy, telerobot is classified into tele-autonomy 

and tele-collaboration [57]. The former term refers to the combination of teleoperation 

and autonomous robotic control. In some cases, a unilateral controller is used. In this 

case, there is no information feedback from slave to master or from master to human. The 

latter means all operations are controlled by the human-machine collaboration, usually in 

the form of force reflection.  For teleoperation itself, it can be classified into unilateral 

and bilateral telerobotics according to the data flow. In the former case, the slave robot is 

operated in free teleoperation, just like an open- loop system. The only feedback is the 

task execution video of the slave or even no video if the master and slave are in the same 

room. This case is illustrated in figure 2.5 (upper part). The latter one has force feedback 

provided to the teleoperator, thus forming a “kinesthetic” or “tele-presence” system [33, 

34, 37, 73].   Figure 2.6 shows the architecture of a typical bilateral teleoperation. In this 

case, strategies in which human decisions are merged with computer-based assistance 
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have been made possible by more complex forms of automatic control and sensor data 

fusion.  The control system adds computer-generated velocity/force inputs to those from 

the master in the impedance-controlled formulation to assist controlling the motion of the 

manipulator, such as moving along a surface without impact and obstacle avoidance. 

Bilateral impedance control in telerobotic systems provides good teleoperation since 

force reflection is provided to the operator during operation [33, 36, 39].  Dubey et al 

proposed variable impedance parameters to adapt to variable circumstances thus 

overcoming the conflict problem of choosing desired dynamics parameters [34]. This 

controller is primarily used in tasks requiring contact, such as needle inserting into tissue, 

object surface exploration.                

Teleoperation system design usually takes operation accuracy into account, not 

the convenience and simplification of operation. With the improvement of the controller 

architecture and assistance attempt, the task performance of telerobotic system in 

rehabilitation engineering is still not satisfactory [40, 41, 44].  For a simple "go get a cup 

and put it on a pad" task, it takes the operator 50 seconds, mostly due to the indexing the 

master once the master reaches its workspace limit and tuning the gripper to grasp the 

target [53]. Furthermore, the performance largely depends on the operator's familiarity 

with the system.  In most cases, using a robot as a teleoperated device to complete a task 

is much harder than using human arm and hand.  It can soon become very exhausting, 

especially if it has to perform repeated tasks such as feeding, even with some assistance.  

Many researchers tried to improve the operation accuracy, reduce execution time and 

relieve the operator's mental labor through adding artificial intelligence.  Kawamura et al 

[51] looked at how far rehabilitation robots had come in possessing abilities that relieve 
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the user from the mental burden of controlling the robot. They had developed modules 

for fuzzy commands interface, object recognition and task planning. In intelligent 

telerobot system, vision-based assistance has improved the operation of aligning the end-

effector with the target [45, 50].   

 

Figure 2.5 Tele-autonomy is the Combination of Teleoperation and Autonomy 
 

 

 

                                                                           

 

Figure 2.6 Tele-collaboration with Information Feedback 
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The telerobot emphasized in this dissertation, is the open loop telemanipulation 

with assistance. The challenge is to make it more functional and more intelligent. This 

dissertation is an attempt to address the issue of combining human flexibility and 

machine intelligence into an efficient rehabilitation robotic system. 

 

2.3. Teleoperation Assistance Background 

In teleoperation, it is essential to provide as much assistance as possible for the 

operator. Basically, the assistance algorithm is to map the master commands to the slave 

in a way that scales up or down depending on the task and environment information. The 

scaling factors vary according to the tasks and environment. The idea behind the 

assistance function concept is the generalization of position and velocity mappings 

between master and slave manipulators of a teleoperation system. This concept was 

conceived as a general method for introducing computer assistance in task execution 

without overriding operator’s commands to the manipulator (Figure 2.7). The assistance 

functions can be classified as regulation of position, velocity and contact forces. All of 

these assistance strategies are accomplished by modification of system parameters. A 

simple form of position assistance is scaling, in which the slave workspace is enlarged or 

reduced as compared to the master workspace. The velocity assistance is commonly used 

in approaching target and in avoidance of obstacles. In both cases, the velocity scaling 

varies according to whether motion in that particular direction is serving to further the 

desired effect of the motion.  
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Figure 2.7 Human -Machine Cooperative Teleoperation Concept [29] 

2.3.1. Regulation of Positions  

In these functions, the motion of the manipulator is constrained to lie along a 

given line or in a plane. This helps persons with disabilities operate more stably and 

smoothly. The details of these functions were presented in a different work by the authors 

[67] (See Figure 2.8). 

 

Figure 2.8 Representation of Slave Constraint Frame in the Constraint Plane [67] 
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Figure 2.9 Scaling Factor Function [53] 

2.3.2. Regulation of Velocities 

 In this case the mapping between the master and slave is done based on 

velocities. The velocity scaling used varies according to whether the motion in a 

particular direction is serving to further the desired effect of the motion. In the approach 

assistance, the velocity is scaled up if the motion reduces the distance between the current 

and goal positions of the manipulator. Otherwise, the velocity is scaled down. For 

velocity regulation, the scaling factor’s changing is depicted in Figure 2.9. The scaling 

factor depends on the subtask being executed and the direction of travel. The relationship 

between the master/slave velocities is: Vslave = ScaleFactor• Vmaste.  Figure 2.10 shows a 

velocity scaling factor varying based on the distance reading when the end-effector is 

approaching a wall.    

Using a vision system, Everett designed a vision-based mapping to align the end-

effector of the slave manipulator with a cross object [29, 45]. The velocities that reduce 

the alignment error are scaled up and the ones that increase the alignment error are scaled 

down (Figure 2.11). 
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Figure 2.10 Scaling Factor Varying for Approach [29] 

 

 

Figure 2.11 Coordinate Frames for Cross Alignment Task [29] 

In tele-collaboration, another type of assistance is “virtual fixture”. This 

assistance is functions of spatial parameters, instead of time. But what is virtual fixture? 

Virtual fixtures are defined, according to [68], as “abstract precepts overlaid on top of the 
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reflected sensory feedback from a remote environment such that a natural and predictable 

relation exists between an operator’s kinesthetic activities and (efference) the subsequent 

changes in the sensations presented (afference)”. Intuitively, it is very easy to understand 

this. As a matter of fact, everyone has experience of using a real fixture, for example, 

drawing a straight line using a ruler.  By pressing your pencil against this "fixture", we 

are able to quickly draw a very straight line.  Now imagine if there was no ruler there, but 

there was a virtual wall you could press against instead of a ruler.  Similarly, what if there 

were invisible forces pulling on your pencil, forcing it to follow a straight path.  These 

are virtual fixtures. Virtual fixtures play the same role in robot motion as they do in our 

line drawing motion. As a matter of fact, virtual fixture is a computed-generated 

constraint that displays position or force limitations to a robot manipulator or operator. It 

can be used to constrain the manually controlled manipulator’s motion on a desired 

surface or to be pulled into alignment with a task [37, 38, 61, 64]. Usually, two stiffness 

coefficients are defined: stiffness along the desired path and stiffness orthogonal to the 

path. The ratio between these two stiffness coefficients indicates the softness or hardness. 

If the ratio is close to zero, it is the hardest fixture, which means that end-effector can 

only move along the path, not deviating at all. If the ratio is close to 1, it is the softest 

fixture, where the end-effector can move freely. So this kind of fixture is usually used for 

path following (Figure 2.12).  

Virtual fixture can also be in the form of potential force fields [68, 69].  Potential 

fields were used to produce velocity commands, which, when added to those generated 

by the input device, maneuver the manipulator toward the target or away from obstacles 

[69]. Force field is usually in the magnetic form. The role of this type of fixture is the 
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same, guiding the end effector into a goal or away from an obstacle. Figure 2.13 shows 

that extract and insert fixtures restrict the motion of the end-effector when it is close to 

the tool grasping position. This behavior is implemented in order to avoid a collision of 

the manipulator with the tool, while allowing the operator to quickly extract/insert the 

grasping position [69].  

 

Figure 2.12 Two Types of Reference Direction Fixtures [55] 
 

 

 

Figure 2.13 Virtual Fixtures to Aid Extract / Insert Motion [69]  
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Chapter 3: Teleoperation with Assistance Functions  

3.1. Introduction 

This chapter describes a telemanipulation system to assist persons with disabilities 

perform dexterous manipulation tasks. This work is expected to enhance the teleoperation 

performance through the use of scaled mapping from master to slave manipulation based 

upon sensory data. The concept is that appropriate movement for the task is kept or even 

enhanced, but the undesirable movements are reduced.  This is done using assist 

functions, that scale the input velocity according to the task. This assistance approach 

uses assist functions and available sensory data to perform variable velocity mapping 

between the master and slave, referred to as the Sensor Assist Function(SAF). A common 

vocational rehabilitation test referred to as Box and Blocks was chosen to test the 

effectiveness of this sensor-assisted function. A variable scaling scheme was developed 

using available sensory data. In the simulation mode, a visual environment was created 

for the Box and Blocks test. This was used to predict if a person with disabilities would 

be able to perform a task comfortably.  The real test was performed using a master and 

slave manipulator system with a camera and laser range finder. A motion constraint was 

added to the master to simulate a user with disabilities.  The results demonstrated that the 

sensor assistance not only reduced required input motion, idle time, and execution time, 

but also increased manipulation accuracy during the Box and Blocks test. This work 
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prompted the need of building a test-bed that uses available sensory information to adjust 

parameters during task execution. 

3.2. Assistance Functions Concept 

Assistance functions were developed to assist the operator by scaling the input 

velocity according to the task.  The assistance includes linear assistance, planar 

assistance, and velocity assistance. 

The linear assist function constrains the input velocity along a line.  The input 

velocity is transformed to a task frame and multiplied by a scaling matrix, and then 

transformed back to the base frame.  A goal line is determined between two points and 

defined as the X-axis of the linear task frame.  The Z-axis is defined as the perpendicular 

vector, and the Y-axis is defined by the cross product of Z cross X.   A transformation 

matrix is calculated according to the task frame, and is multiplied by the input velocity.    
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where Vslave is the input velocity in the task frame.  Then a scaling matrix is applied to 

scale down the velocity in the undesired directions along the task frame Y and Z-axis. 
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where the values of kx, ky, kz depend on a specific task.  In the linear assistance case, the 

values of ky and kz are very small.  Then, Vscaled is transformed back to the base frame 
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using the transformation matrix, and that becomes the modified velocity that is sent to the 

robot controller.   

The planar assist function constrains the input velocity along a plane.  To 

construct this task frame, three points are used to define a plane.  The X-axis is defined as 

the line between points 1 and 2.  The Z-axis is defined as the normal to the plane, and the 

Y-axis is defined as the cross product of Z and X.   A transformation matrix is determined, 

and the input velocity is converted to the task frame according to equation (3.1), the same 

as the linear case.  For the planar assistance, however, the value of the scale matrix is 

different.  Since the desired motion lies in the X-Y plane, only motion along the Z-axis 

will be scaled, so kz is very small.  After the task frame velocity, Vslave, is multiplied by 

the scale matrix, it is converted back to the base frame and sent to the robot controller, 

according to equation (3.2).   

The velocity assist function increases and decreases the velocity according to the 

distance to the goal object or an obstacle.  As the distance to the goal is known, a velocity 

scale factor can be applied to the velocity in order to increase or decrease the input 

velocity.    

These assistance strategies are integrated together to provide a form of assistance 

for users with disabilities to perform the Box and Blocks task in this research. 

3.3. Box and Blocks Task 

The Box and Blocks test measures gross manual dexterity and is frequently used 

in research on rehabilitation. This test, represented in figure 3.1(simulation mode) and 

figure 3.2 (real testing), consists of moving one- inch blocks from one side to another in a 

two-sided box.  A wall divides the two sides.  This test the use of large motions in all 
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directions.  The goal is to pick up the block from one side, and place it in the other side. 

In simulation mode (Figure 3.1), force feedback was added to make user feel resistive 

force and collision. In real test (Figure 3.2), a sphere constraint was applied to simulate 

the workspace of persons with disabilities. Since the possible input motion has been 

decreased, the able-bodied user will better represent a person with disabilities. Assistance 

function algorithm is based on sensory data. 

 

Figure 3.1 Box and Blocks Test Window Interface 
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Figure 3.2 Box and Blocks Test, Master and Slave 
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3.4. Sensor Assist Function 

In this research, a combination of the linear, planar and velocity assistance, 

referred to as the Sensor Assist Function (SAF), was developed for the Vocational 

Rehabilitation test called Box and Blocks.  The SAF essentially uses sensory data to 

perform variable velocity mapping from master to slave (Figure 3.3).  

 

Figure 3.3 Teleoperation Test-bed 

 

Figure 3.4 Sensors Mounted on End-Effector 



www.manaraa.com

 25

The sensors include a DME 2000 Laser Range Finder (LRF), and a vision system 

using a Hitachi KP-D50.  These sensors are mounted on the end-effector according to 

figure 3.4. The vision system is used to locate the goal object and obstacles.  The image 

processing software, Halcon [77], obtains the center position of the goal object in the 

image plane.  Once the end-effector grasps the object, the software obtains the edge of 

the wall, which is used to avoid obstacles.  The LRF is used in the velocity assistance in 

the Z-direction depending on the depth of the obstacles and the object.   

3.4.1. Description 

There are seven stages of assistance shown in figure 3.5.  At the start of the task, 

the robot is in the home position and there is no scaling until the object is seen by the 

vision system.  
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Figure 3.5 The Seven Stages of the Scaling Scheme 

The first stage involves minimizing the distance between the end-effector and the 

object in the X-Y plane.  The second stage adds z-direction scaling as the manipulator 

moves down.  The third stage assists the manipulator when the vision system can no 
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longer see the goal object.  Once the object is obtained, the fourth stage assists the 

operator in avoiding the wall obstacle.  The fifth stage is activated when the range data is 

too close to an object.  The sixth stage involves the vision system, and enhances the 

movement in the horizontal plane to clear the wall horizontally.  The seventh stage 

simply frees the user to place the object down on the correct side of the box. 

Since the center of the camera is not the end-effector position, the camera needs 

to be calibrated with the end-effector.  According to figure 3.6, the end-effector position 

is projected on the image frame, and its pixel position is determined relative to the center 

position of the goal object.  
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Figure 3.6 Image Frame Showing Vector Determination 

 

3.4.2. Stage One  

For stage one, the scaling is based upon the position of the object and the 

projected end-effector position.  A vector is created between these two points, in the X-Y 

plane, and the task frame is calculated using this vector and a Z-axis.  The x-direction of 

the image frame is opposite to the x-direction of the slave frame, so the vector calculation 

is as follows: 
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                           ( ) ( ) yVector ⋅⋅= EndY-VisionY,xVisionX-EndX                  (3.3) 

A transformation matrix is determined from the PhanToM frame to the task frame 

according to the task frame calculations in section 3.2, and the input velocity is scaled 

according to the following equations: 

                                  C
OINPUTSLAVE TransformVV ⋅=                                          (3.4) 
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                                    ( )TC
OSCALEDMODIFIED TransformVV ⋅=                              (3.7) 

where, for stage one, VisionScale ranges from 1.5 to 3 maximum.  If the dot product of 

VSLAVE and Vector is negative, then VisionScale is 0.1.  This means that the input velocity 

is in the opposite direction of the goal object.  The modified velocity, VMODIFIED is sent to 

the low-level controller. 

3.4.3. Stage Two 

Stage two starts when the magnitude of the Vector is less than 75 pixels.  This 

means that the end-effector is close to the correct x, y position over the goal object, and 

the operator can start moving down towards the object.  Stage one exists to help reduce 

the sensor error by keeping the end-effector in the X-Y plane for large movements while 

the operator is approaching the goal.  Stage 2 uses the same task frame as stage 1, but the 

scale matrix reflects increased velocity in the z-direction. 



www.manaraa.com

 28

                          















=

rScaleFacto

eVisionScal
Scale

00
01.00
00

                                   (3.8) 

where VisionScale ranges between 1 and 1.5, and if the dot product of VSLAVE and Vector 

is negative, then VisionScale is 0.1.  ScaleFactor depends on the value of the LRF, shown 

in figure 3.7. 
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Figure 3.7  ScaleFactor According to LRF Data (DME) 

So this scale matrix helps to guide the end-effector down towards the goal object.  

It increases the scale in the Z-direction, and allows motion in the hVector direction to pull 

the end-effector to the goal object.   

3.4.4. Stage Three 

The third stage starts when the vision system can no longer see the object.  As the 

end-effector gets closer to the object, it will eventually move out of the image frame 

because of the location of the camera on the end-effector.  In this stage the task frame 

will not be calculated since there is no data from the vision system.  So the following 

scale matrix will be directly applied to the input velocity.  Since the end-effector is near 

the object, there will be little motion required in the X and Y direction.    
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                                    INPUTMODIFIED VScaleV ⋅=                                                    (3.10) 

Using a scale of k = 0.25 in the X and Y direction allows for some error correction, 

but it scales down large movements from the operator away from the goal object. 

3.4.5. Stage Four 

The fourth stage begins when the end-effector grabs the object.  This stage scales 

the velocity in order to avoid the center wall obstacle. At first, the velocity is scaled to 

move the end-effector in the positive z-direction according to AvoidScale.  AvoidScale 

depends on the LRF value, and ranges from 3 to 1.  If the input velocity is in the 

downward z-direction, then AvoidScale is 0.1. The y-direction is scaled down because the 

desired motion for the task is in the x-direction.  The vision system performs edge 

detection and returns the greatest x-value of that edge in the image frame.  The initial 

scaling equation is: 
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3.4.6. Stage Five 

A as the end-effector moves to the left to place the object on the other side of the 

box, the LRF is monitored for obstacles.  If the LRF sees an obstacle, then all velocity 

inputs are scaled down, and the upward z-direction is increased by AvoidScale, according 

to the following equation: 
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As the end-effector moves to the left, the LRF leads, according to figures 3.1, 3.2 

and 3.3.  Figure 3.3 shows how the LRF can measure the wall without a collision.  

Therefore, the LRF checks the z-direction to make sure the whole end-effector can clear 

an obstacle. 

 
3.4.7. Stage Six 

Now that the end-effector has enough height to clear the wall vertically, it must 

clear the wall horizontally.  So, once the wall comes into the image frame, the scaling is 

shown by the following equation: 
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where Avoidwall increases the negative x-direction, see figures 3.1 and 3.3, to assist in 

avoiding the seen obstacle.  Once the wall obstacle is seen, the z-direction will be scaled 

down. 

3.4.8. Stage Seven 

Once the camera can no longer see the wall, the end-effector has avoided the wall 

obstacle.  The scaling returns to regular z-direction velocity assistance according to the 

following equation.   
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Once the object is near the table on the correct side of the box, the operator is 

ready to release the object.  Now the task is completed, and the completion time is 

recorded.  By returning the end-effector to home position, the operator is now ready to 

perform another Box and Blocks test. 

3.5. Experimental Results 

3. 5.1. Telemanipulation System Structure  

In this system (figure 3.8), the master robot is a PhanToM with 6 degrees-of-

freedom from Sensable Technologies.  It can provide tactile feedback for the user.  A 7 

DOF industrial robot RRC K-2107a is used as a slave manipulator in this application. A 

Windows 2000 PC is used to control the PhanToM and compute the mapping from 

master to slave. The slave manipulator controller runs another PC.  A third PC handles 

the sensory data. All PCs are linked together through an Ethernet, and sensory data is sent 

to the PhanToM PC and the velocity commands are sent to the manipulator PC. 

Phantom Hand Controller

Single Board Computer

RRC Manipulator

PC With Frame Grabber
and HALCON

PhanToM PC

RRC Control PC

DME
2000

Hitachi
KP-D50

 

Figure 3.8 The Telemanipulation System 
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3.5.2. Software Implementation 

Two major programs have been developed in this chapter. One is the image 

processing, which does the Sobel edge detection and region growing to obtain the 

coordinates of the object in image plane (figure 3.9 and 3.10).  This program uses API 

functions provided by HALCON. 
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Figure 3.9 Region Growing Image 
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Figure 3.10 Sobel Edge Detection Image 
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The other is the control program run in the master PC.  It was developed using the 

GHOST SDK from Sensable Technology [48].  This software obtains the accurate 

position and orientation of the PhanToM.  Force reflection is also available with the 

software. The sample time of the master PC getting position or velocity data from the 

master device is 0.2s. Once the master velocity is obtained, it is modified according to the 

SAF.  This adjusted velocity command is sent to the slave PC at the same rate as its 

sample rate. 

 

3.5.3. Results 

 

3.5.3.1. Simulation Mode  
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Figure 3.11 Trajectory Comparison of PhanTom and Slave Manipulator 
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Figure 3.12 Box and Block Time Execution 

 

An able-bodied person performed the Box and Blocks simulation with assistance 

function to determine the effect of the assistance. When user’s movement is away from 

the desired trajectory, force reflection will be felt by the user that makes the user move 

back to the desired trajectory.  Figure 3.11 is the trajectory comparison of the Phantom 

and slave manipulator when doing box and blocks test with assistance function. 

Obviously, though the master has some random movements, the slave manipulator 

moves along a desired trajectory very well. A sample of time executions of seven tests is 

shown in figure 3.12. It is noticed that due to the assistance func tion, the average time 

was reduced considerably (from 10.33 to 5.66 seconds), and the standard deviation (from 

0.81 to 0.50) was smaller as well.  

 
3.5.3.2. Real Test Mode  

An able-bodied person performed the Box and Blocks real test with and without 

the SAF to determine the effect of the assistance with a sphere constraint in his 

workspace, which simulated the motion of persons with disabilities. The height of the 

wall in the tests is 10 inch. Figure 3.13 shows the trajectory of the slave manipulator with 
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no assistance versus the slave with assistance when doing real box-block test.  According 

to this figure, the trajectory with assistance is a smooth curve approaching the object, and 

then avoiding the wall obstacle.  The curve shows how the user was guided toward the 

object. The trajectory with no assistance shows that the user has a random approach to the 

object, while showing many uncertain and unnecessary movements. It also shows the 

effect of each stage of scaling.   
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Figure 3.13 Trajectory of Box and Blocks Task 
 

 

For data analysis, the person performed the test 30 times with assistance and 30 

times without assistance.  Table 3.1 shows the results of the tests. It includes the decrease 

of necessary input motion, idle time, and execution time when using the developed 

computer assistance. Whenever in simulation or real test mode, assistance functions not 
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only decreased the execution time, but also reduced its standard deviation from 4.512s to 

2.086s.  

 

Table 3.1 Comparison of Averages for Box and Blocks Test Using Workspace Constraint 

Average Test Data-All Positions No Assistance  SAF Assistance % Decrease 
 Total Distance 11.87 9.89 16.7% 
 Number of Times Reposition 43.80 23.80 45.7% 
 Time Spent Repositioning 22.56 9.66 57.2% 
 Total Completion Time 76.63 50.24 34.4% 

 

3.6.  Summary 

This work provides a virtual simulation and sensor-assistance approach for a 

complex teleoperation task to be executed by persons with disabilities. It can be used as a 

vocational training platform and as an evaluation tool after therapy in rehabilitation 

engineering. The assistance will increase the safety and dexterity of these users who 

would not be able to perform the task otherwise. In this dissertation, the Box and Blocks 

test was explained as well as a suitable combination of assistance that variably scales the 

input velocity.  Able-bodied persons initially performed the test to show the effect of the 

assistance concept.  A constraint was added to the input to simulate a person with 

disabilities by decreasing the possible movements of the able-bodied user, and more tests 

were performed.  The results show how the desired motion was kept or sometimes 

augmented, and how the unwanted motion was reduced. Therefore, when applying this 

assistance, the performance of a person with disabilities will be drastically enhanced. 
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Chapter 4:  Telemanipulation Assistance Based on Motion Intention Recognition  

In telemanipulation systems, assistance through variable position/velocity 

mapping or virtual fixture can improve manipulation capability and dexterity [37, 45, 53, 

61, 64].   Conventionally, such assistance is based on the sensory data of the environment 

and without knowing user’s motion intention. In this dissertation, user’s motion intention 

is combined with real-time environment information for applying appropriate assistance. 

If the current task is following a path, a virtual fixture is applied.  If the task is aligning 

the end-effector with a target, an attractive force field is produced. Similarly, if the task is 

avoiding obstacles that block the path, a repulsive force field is generated. In order to 

successfully recognize user’s motion intention, a Hidden Markov Model (HMM)-based 

algorithm is developed to classify human actions, such as following a path, aligning 

target and avoiding obstacles. The algorithm is tested on a simulation platform.  This 

chapter presents the teleoperation assistance algorithm development based on operator's 

motion intention recognition through Hidden Markov Model (HMM).  The basic theory 

and the application of HMM are also presented.  

4.1. Telemanipulation Assistance 

The fundamental purpose of a telerobotic system is to extend operator’s sensory-

motor facilities and manipulation capabilities in remote environment [70]. This approach 

is guided by the philosophy that the human operator should remain in direct control of the 
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slave at all times, with human-independent control parameters altered according to sensor 

information. However, manipulation tasks such as assembly are still difficult for a 

telerobotic system. In many cases, the user’s physical labor load of completing a task 

manually is replaced by mental burden of controlling the remote input device mentally.  

In the field of rehabilitation robotics, this is the main hindering for the wide application 

of telerobot assistive devices [71]. So assistance for teleoperation has become essential in 

order to reduce the operation fatigue. The first kind of assistance is the variable position 

and velocity mapping based on sensory information and force feedback [53]. The other is 

virtual fixture, which has been used as means of providing direct, physical assistance [37, 

61, 64]. Just imagine drawing a straight line without a ruler, it is very difficult. Virtual 

fixture plays the same role as a ruler to enhance human’s drawing a straight line. Both of 

these assistances can enhance a human’s performance accuracy for complex tasks 

execution and reduce time consumption. But the limitation is that they are related to some 

specific tasks. Our recent work in telemanipulation systems for rehabilitation engineering 

motivated us to enhance manipulation accuracy and reduce operator’s fatigue [29, 50, 

53].  In order to provide general assistance, specific tasks need to be divided into several 

simple and general subtasks. Our work tries to combine the environment information 

with user’s motion intention before applying appropriate assistance. Human motion 

intention is classified by movement velocities through Hidden Markov Model: following 

a path, aligning with a target, avoiding an obstacle and stopping.  For each motion, 

appropriate assistance is provided. For example, if the motion is following a path, a 

virtual fixture orthogonal to the path is applied, just like a ruler. If the motion is aligning 

with a target, an attractive force field is applied. 
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4.2. Classes of Motion in Telemanipulation   

With typical telemanipulation, the user enters the control loop, sensing the 

environment information such as the location and the distance of the target and providing 

the appropriate control signal through moving the input device. For a common task, such 

as grasping a cup and putting it on a cup pad, the motion process can be divided into four 

classes:  

1. Following the desired trajectory;  

2. Aligning with the target;  

3. Avoiding an obstacle; and 

4. Stopping 

The "following the desired trajectory" motion happens when a desired trajectory 

is planned.  For the “go grasp” task, the desired trajectory is a straight line if there is no 

obstacle blocking the path. We can decompose the velocity vector vc into two parts, vp, 

velocity component along the desired path tangent direction and vo, velocity component 

orthogonal to the desired path tangential (Figure 4.1). While users are following a path, vp 

>>vo (Figure 4.1); While aligning the end effector with the target, both vp and vo are 

relatively small and close to each other (Figure 4.2); while avoiding an obstacle, vp <<vo 

(Figure 4.3); and when stopping, both vp and vo  are close to zero (Figure 4.4). But these 

features are not true for each sample. We can not classify these four motions for each 

sample value using a simple threshold.  So Hidden Markov Model, a technique of 

stochastic process is used. Since these two velocity components are orthogonal, they are 

independent.   In order to apply HMM to model these two velocities components, a 2-

dimensional HMM is used. 
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Figure 4.1 Path Following Motion and its Velocity Profile 

 

 

Figure 4.2 Aligning with Target Motion and its Velocity Profile 

 
Figure 4.3 Avoiding Obstacle Motion and its Velocity Profile 
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Figure 4.4 Stop Motion and its Velocity Profile 

 

4.3. Hidden Markov Model based Motion Recognition 

4.3.1. Data Preprocessing 

The velocity of the input device is sampled at 1000Hz rate.  The data is denoted 

as ],[ Op VVV = , Vp and Vo are the sets of velocity sampling values vp and vo. 
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                                                (4.1) 

where n is the sample number. Since Vp and Vo play the same role, we just demonstrate 

the data processing of one of them, i.e. Vp. Since we use discrete HMM, we need to 

convert this velocity data into a sequence of discrete symbols. We follow two steps in this 

conversion: (1) data preprocessing and (2) vector quantization, as illustrated in Figure 

4.5. The primary purpose of data preprocessing is to extract meaningful feature vectors 

for the vector quantization. In our case, the preprocessing proceeds in two steps: (1) 

spectral conversion, and (2) power spectral density (PSD) estimation. 

First, a 16-point width window with 50% overlap is used to select data: 
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                           ],......,[ ,16,2,1 pppp vvvv =                                                  (4.2) 

Prior to spectral conversion, a hamming window is used to filter each frame, thus 

minimizing spectral leakage.  The Hamming transformation )  ( ⋅v
HT maps a k-length (k 

=16 in this case) real vector to a new k- length real vector.  
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Next, FFT (Fast Fourier Transform) analysis is applied for every Hamming 

windowed data.  The FFT transform )  ( ⋅h
FT maps a k-length vector ],...,[ 21 khhhh =  to a k-

length complex vector ],...,[ 21 kzzzz = .   
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Now, let us define the power spectral density (PSD) estimates for the hamming-Fourier 

output z . The PSD estimates is given by, 
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Figure 4.5 Conversion of Continuous Velocity Data into Discrete Symbols 
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Due to the symmetry structure, the length of PSD estimates output is k/2 = 8. As 

illustrated above, a 16-point velocity samplings window is mapped to an 8-point PSD 

vector. Let us represent the hamming windowing, Fourier transform and power spectral 

density by )  (),,( ⋅v
PFHT .  If there are m sampling windows, the PSD estimation vectors 

form a matrix as shown below, 
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In the same way, the second dimensional data, Vo can be converted into a PSD matrix as 

m
OV above. 

 

4.3.2. Vector Quantization 

In the previous section, we converted raw velocity data into the feature matrix m
PV  

and m
OV .  Let { } { }mtvV t  ... ,2 ,1   , ∈= denote the set of all feature vectors. In order to apply 

discrete-output HMMs, we now need to convert the feature vectors V to N discrete 

symbols, where N is the number of output observables in our HMMs. In other words, we 

want to replace the many tv  with L prototype vectors { } { }NnxQ nN ,...2,1, ∈= , known as 

the codebook, such that we minimize the total distortion ( )NQVD ,  

       ( ) T
tntnntnt

t
N vxvxxvdxvdQVD )()() ,(   where), ,( min, −⋅−== ∑      (4.8) 

over all feature vectors. We choose the well-known LBG vector quantization (VQ) 

algorithm [72] to perfo rm this quantization.  The illustration of LBG algorithm for 
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different N is shown in Figure 4.7.  For our case, N is determined to be 256.  For our data, 

we set the split offset ε = 0.001 and the convergence criterion δVQ  = 10.0e-15.    With 

these parameter settings, the centroids usually converge within only a few iterations.  

Thus, the velocity signal is trained and classified into 256 vectors, denoted by VQ 

codebook QN.  Now, given a sequence of feature (velocity for our case) vector Vf, we can 

convert them into a symbol vector { }ff sssS  ..., , , 21=  with length f.  Let us use 

)  ( ⋅VQT to represent the conversion from feature vector into symbol, then 

               { }),(),...,,(),,(),( 21
N

f
VQNVQNVQN

f
VQf QvTQvTQvTQVTS ==              (4.9) 

              { }NnxvdindexQvTs n
f

N
f

VQi  ... ,2 ,1)],,( [min),( ∈==                  (4.10) 

We train the VQ codebook by these vectors and the codebook is produced by LBG 

algorithm (see Figure 4.6). The LBG VQ (vector quantization) technique maps these 8-

dimensinal vectors into a finite set of vectors Y = {yi: i = 1, 2, ..., L}, where L is the 

length of the codebook(it is determined to be 256 in our case). Each vector yi is called a 

code vector or a codeword and the set of all the codewords is referred to as a codebook.  

Associated with each codeword, yi, is the nearest neighbor region called Voronoi region, 

and it is defined by [72]:       

                 }   ,:{ ijallforyxyxRxV ji
k

i ≠−≤−∈=                                   (4.11) 

The 256 8-dimensional vectors in the codebook are 256 symbols in the output probability 

distribution functions for discrete HMM. Similarly, a codebook for the velocity 

component vo vector and the 256 symbols are also obtained in the same way.  The 

computation procedures of the data preprocessing part are illustrated in Figure 4.5.  This 

method is similar to the continuous-symbol conversion in [62] 
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Figure 4.6 LBG Codebook Training 
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4.3.3. HMM Training 

    
 

    
                                                                                                                                                                                  

        

Figure 4.7 LBG Vector 
Quantization for Random 2D Data, 
as L Equals 2,4,8,16,32 
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4.3.3. HMM Training  

HMM is usually used in continuous and discrete forms. Relatively, discrete HMM 

is easier for computation. In this dissertation, discrete HMM is adopted.  A discrete 

HMM can be defined as follows [63]: 

1. A set of N states S={S1, S2…SN} 

2. A set of M possible observations V={v1, v2…vM} 

3. A state transition probability distribution A={aij}, where aij=P [q t+1=Sj|qt = Si], 

1<=i, j<=N 

4. Observation probability distribution in each state j, B={bj(k)} where bj(k)=P [vk at 

t|qt = Sj], 1<=j<=N, 1<=k<=M 

5. Initial State distribution π  = {pi}, where pi = P [qi=Si] 1<= i <=N 

6. Let λ = (A, B,π) be the complete parameter set.  

Figure 4.8 represents a 5 state HMM, where each state emits one of 256 discrete symbols 

in two dimensions.  

 
Figure 4.8    5-states Left-Right Hidden Markov Model, with 32 Observable Symbols in 

Each State 
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In order to train an HMM model and use it to do recognition, the following three basic 

problems for HMM need to be solved [63]: 

1.           Given the observation sequence O = o1 o2 … oT, and a model λ = (A, B, π), 

how to determine P(O|λ), the probability of the observation sequence, given 

the model? This can be viewed as scoring a model in terms of how well it 

matches the observation. 

2.           Given the observation sequence O = o1 o2 … oT, and a model λ = (A, B, π), 

what is the best corresponding state sequence Q = q1 q2 …qT, that best 

explains the observation (e.g. the most probable sequence). 

   3.            How do we set or adjust the parameters of a model λ = (A, B,π) to maximize 

P(O|λ). This is the training or learning problem of adjusting the model's 

parameters to best fit a set of training data. 

In order to classify four different motions, we need to design a separate HMM for each 

motion.  The observations are a sequence of coded spectral vectors where each spectral 

vector is mapped to one of several code words which is the closet match. Also the 

observations are sequences of codes representing the motion executed repeatedly by one 

or more operators.  The solution to problem 3 is to set the parameters of the model for 

each motion. The solution to problem 2 is to segment each of the motion training 

sequences into states and thereby gain information about how to adjust the number of 

states or the codebook.  Once the four models are built; we can use the solution to 

problem 1 to score each motion model’s match to a given observation sequence and 

select the best model. The computation of the three problems will be explained in this 

section. 
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Problem 1 is to determine P(O|λ). Examine every state sequence length T, Q = 

q1,q2,…,qT, how likely this state sequence is and how likely it is to generate the 

observation sequence. First, we assume that individual observations are independent, and 

then the probability of observing O given Q is [63]: 

               )()()(),|(),|( 2211
1

Tqqqtt
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t
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⋅⋅⋅⋅== ∏
=

λλ                (4.12) 

The probability of a given state sequence is simply: 

                                )|(),|()|,( λλλ QPQOPQOP =                                                 (4.13)  

So the joint probability of an observation and a state sequence is: 

                               )|(),|()|(
Q 

λλλ QPQOPOP
all
∑=                                                (4.14) 

The computation of Eq.(4.14) requires summing over NT possible sequences. Instead, a 

forward-backward procedure is used to do this. The detailed algorithms is described by L. 

Rabiner[63].      

Problem 2 is to find the state sequence, Q, which is the most probable given a 

sequence of observations, i.e want to maximize P(Q|O,λ), or equivalently maximize 

P(Q,O|λ).  The Viterbi algorithm [63] finds this state sequence by defining  

                               ])|,,...,[(max)( 21,...2,1 λδ OiqqqPi tqqqt t
==                                   (4.15)      

i.e. the probability of the best subsequence that accounts for the first t observations and 

ends in state Si.  The induction 

                                   )())((max)( 11 ++ ⋅= tjijtit Obaij δδ                                          (4.16) 

computation is used. Also it is necessary to store the state argument i that maximizes this 

function for each t and j, this will be kept in the vector ψ t(j). 
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Problem 3 is about training. So far there is no known way to analytically calculate 

the parameters of a model that maximizes the probability of an observation. However, the 

parameters can be locally maximized using an iterative hill-climbing method called 

Baum-Welch or EM(expectation modification)[63].  Let us explain Baum-Welch method. 

Define ξ t(i,j) as the probability of being in state Si at time t and state Sj at time t+1. 

                                ),|,(),( 1 λξ OSqSqPji jtitt === +                                        (4.17) 

This can be calculated as [63] 
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Let γt(i) be the probability of being in state Si at time t given the sequence and the model. 
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It can be proven that the updated model, or say a new model λ  is then either [63] 

• λ =λ (We are at local maximum. This is also the stopping criterion for 

training) or 

• λ is better than λ regarding given observation, i.e. )|()|( λλ OPOP >  

Overall, the training step is to obtain a “maximum likelihood estimate” of an HMM for 

an observation. The flow of this algorithm can be described as follows [63]: 

• Initialize λ= λ =(A, B, π) to random estimates that satisfy the probabilistic 

constraints (see below) 

• Repeat 

o Set λ: = λ  

o Calculate π , , BA  based on O and λ and set λ : = π , , BA . 

      Until λ  = λ 

• Always maintains probabilistic constraints: 
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In practice, it is impossible that λ  =λ. But they could be very close. Let λ (k-1) 

denote the HMM λ after k-1 iterations of Baum-Welch algorithm, and let λ (k) denote the 

current iteration of Baum-Welch. Then, the training computation stops if 
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where εHMM = 0.00001. In addition, in order to avoid computation overflow due to the 

multiplication of very small probability numbers, scaling up for too small probability 

values are applied if necessary. This scaling up does not affect the training of the HMM 

since the only useful information is the ratio of different probabilities and not their real 

values.  As explained in the previous section, a model corresponds to a motion. So we 

need to train four separate HMMs.  Obviously, problem 3(training) is the most difficult 

one of the HMM’s three problems. Suppose the HMM for “path following” is initialized 

as follows: λ = (A, B,π).  
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From these, we can see the probability constraints: the sum of the probability 

distribution from the current state to other states is “1”; at each state, the sum of the 

probability distribution of all possible observations is also “1”. Using the observation 

sequences of “path following”, the HMM is trained, that is, the probability parameters are 

adjusted. The trained HMM is expressed by the updated values until convergence occurs. 
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4.3.4. Motion Recognition  

Once the four HMMs are trained by their corresponding training set, they can 

classify motions. The classification criterion is the forward score of a sequence of 

observations for a given model. This forward calculation is the same as the forward part 

of the Forward-Backward procedure used in solving problem 1.  
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Figure 4.9 Forward Computation Illustration 

 

Let us illustrate this computation by two one-dimensional, two-state, left-right HMMs as 

an example. Figure 4.9 shows two HMMs representing two classes.  The length of the 

observation vector is 4. Therefore, at each time t, one of the four symbols, A, B, C or D 

will be observed for each state. From the structure of the first HMM (Figure 4.9 (a)), it’s 

parameters are: 
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For the given observation sequence ABA, its forward score is computed as follows: 

06.02.03.0)()1( 111 =×== Abπα  
56.08.07.0)()2( 221 =×== Abπα  

012.04.0]056.05.006.0[)(])2()1([)1( 12211112 =××+×=+= Bbaa ααα  
0295.005.0]0.156.05.006.0[)(])2()1([)2( 22211212 =××+×=+= Bbaa ααα  

0012.02.0]00295.05.0012.0[)(])2()1([)1( 12121123 =××+×=+= Abaa ααα
0284.08.0]10295.05.0012.0[)(])2()1([)2( 22221223 =××+×=+= Abaa ααα  

0296.0)2()1()|( 331 =+== ααλABAOP  

This is the probability of the first HMM for the given observation sequence ABA. For the 

second HMM (Figure 4.9 (b)), it’s parameters are: 
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The forward score for the given observation sequence ABA is computed in exactly the 

same way: 

05.01.05.0)()1( 111 =×== Abπα  
2.04.05.0)()2( 221 =×== Abπα  

4
12211112 5.705.0]02.03.005.0[)(])2()1([)1( −=××+×=+= eBbaa ααα  

1175.05.0]12.07.005.0[)(])2()1([)2( 22211212 =××+×=+= Bbaa ααα
54

12121123 25.21.0]01175.03.05.7[)(])2()1([)1( −− =××+×=+= eeAbaa ααα

0472.04.0]11175.07.05.7[)(])2()1([)2( 4
22221223 =××+×=+= −eAbaa ααα  

0472.0)2()1()|( 332 =+== ααλABAOP  

Since 0472.0)|( 2 == λABAOP > 0296.0)|( 1 == λABAOP , it can be concluded 

that λ2 is more likely to generate the observation sequence ABA. In other words, if we 

get the observation sequence ABA, the underlying process represented by HMM2 has 
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been recognized. In our case, the HMMs have two dimensions and the length of each 

dimension of observation vector is 256. The successive four symbols obtained by data 

preprocessing are used for the partial observation sequence. It could be, for example, {20, 

255, 120, 19}. This vector is used to compute the forward likelihood of the four HMMs 

as shown in the illustration above. Then for the given observation vector, we choose the 

model that has the largest likelihood as our recognized model at time t.  

  

4.4. Design of Fixture Assistance  

Once user’s motion intentions are recognized, appropriate assistance can be 

designed for each motion.  We define the path curve as p(s) and denote the target position 

by t.  When the goal during task execution is to move to a target, we assume that the 

desired trajectory is a straight line that connects the current Cartesian position of the end-

effector and the target.  A preferred reference direction d can be defined for each point of 

the end-effector xc as:         

 

Figure 4.10 Virtual Fixture Definition 
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Where tx  and cx are the target position and the current position of the end-effector 

respectively. We decompose vc, the current velocity, into two orthogonal components: 

                                                  ddvv cp )( ⋅=                                                        (4.25) 

                                                 ddvvv cco )( ⋅−=                                     (4.26) 

where vp is the velocity component along the path curve tangent and vo is the velocity 

component orthogonal to the curve tangent. The desired path following is such that the 

velocity tangent to the curve is large and velocity components in orthogonal direction are 

relatively small.  If the desired trajectory of a sub-task is a straight line, a virtual fixture 

can provide the same assistance as a ruler helps in drawing a line.  

 

4.4.1 Fixture Assistance 

Fixture assistance is always applied for path following except when the user is 

trying to align an object or avoid an obstacle.  So the stiffness coefficient kd along the 

curve tangent is set to be zero. The stiffness orthogonal to the curve tangent is defined as: 
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≤−
>

=
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k
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c
o )/1(

                              (4.27) 

 

where kc is the fixture coefficient (it is determined to be 0.5N/mm for this experiment), d 

is the distance between the end-effector and the center position of the force fields, and r is 

the force fields radius.  This means that once the end-effector goes inside force field, path 

following fixture is removed (See Figure 4.11 for fixture coefficient). 
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Figure 4.11 Stiffness Coefficients of Different Fixtures  

 

4.4.2. Force Field Design for Targets and Obstacles 

In general, aligning the end effector with a target and avoiding obstacle s are not 

easy to execute, especially for persons with disabilities on the upper- limb. Potential fields 

generated from the center position of the target or the obstacle can provide some 

assistance. Based on this concept, force fields are designed around targets and obstacles.  

We define the radius of force field to be r.  In this dissertation, the force field is defined 

using spring force.  For approaching a target, the force is defined as: 
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0
                                 (4.28) 

where kf is 0.1N/mm. 
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For obstacle avoidance, the force is defined as:  

                                              




≤−−
>

=
rddrk
rd

f
f )(

0
                                         (4.29) 

where kf is 0.1N/mm. Once the end-effector goes within the radius r for aligning with the 

target, the attractive force originated from the object center position can provide 

assistance. The force vectors generated by position and approach fixtures are shown in 

Figure 4.12. Payandeh et al used such virtual fixture as a task-dependent telemanipulation 

aid [5, 14]. However, the origin of the force fields needs to be determined from the 

sensory data. In addition, r should be larger than the size of the target or the obstacle. 

                                         

                                       (a)                                                          (b) 

Figure 4.12 Force Fields Illustration (a: Attractive force, b: Repulsive force) 

4.5. Experiments 

We have implemented the algorithm described above, and conducted  

experiments to determine the system’s performance without and with the assistance.  

4.5.1. Experimental Test Bed 

Our telemanipulation simulation system is composed of a visualization scene and 

a haptic device. The visualization component, simulation scene, is realized through the 

PhanToM and GHOST [48]. In this experiment, the task is to move the end-effector from 
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the origin (0,0,0) to (-80,50,0), referred to as target “Grasp” (this means the end-effector 

must reside in the object sphere for a short time) and then avoid the obstacle (0,45,0) and 

then put the target at the “target destination” (80,50,0) and go back to the origin. The 

target “grasp” and the target “destination” are simulated as 8mm radius spheres. The 

obstacle and the end-effector are simulated as 15mm and 5mm radius spheres; 

respectively.  User is asked to move the end-effector as fast and as smoothly as possible 

(Figure 4.13). In order to avoid confusion, the operator is allowed to move on a planar 

surface and a planar constraint is added to the haptic device. In this experiment, we are 

concerned about the straight- line path since it is relatively easy to obtain from the 

environment information. This algorithm can be extended to a complex trajectory 

application if we can define the trajectory using visual information for the unstructured 

environment.   

End-
effector Origin 

Target 
“Grasp”  

Obstacle Target 
“Destination” 

 

Figure 4.13 Simulation of the Task Execution 
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4.5.2. Experimental Results Without Assistance 

First, an expert user completed the task several times without assistance.  During 

the first several tests, the common performance of the system is shown in Figure 4.14 and 

4.15. As expected, the free motion has much difficulty in aligning with the target and 

following the path.  The velocity components orthogonal to the path are not small 

compared to the useful velocity components tangent ial to the path. Table 4.1 summarizes 

the results, including path following error (mm) and execution time(s). 

 

 

Figure 4.14 Velocity Components Without Assistance 
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Figure 4.15 Trajectories without Assistance 

 

 

 

Table 4.1 Performance Summary without Assistance 

Path Error (mm) Execution Time(s) Subject 
Mean Stdev Mean Stdev 

1 10.1 2.4 21.5 1.9 
2 8.9 1.5 20.2 3.3 
3 11.8 2.6 22.1 3.4 
4 10.3 2.5 20.4 2.8 
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4.5.3. Motion Recognition 

For the task used in this dissertation, four users in the lab completed the task for 

10 times each.  We collected 250 samples of data for each motion, the first 200 for 

training and the rest of the samples are for testing. For a total 50 testing samples of four 

motions, the system successfully recognized 43 samples. The accuracy is 86%. 

Definitely, the size of the training set influences the recognition accuracy.  After we 

included 500 samples into the training set, the system recognized 92 samples from 100 

testing samples.  The motion recognition performance is shown in Table 4.2. 

 

Table 4.2 Motion Recognition Rate 

Incorrect rate Motion Correct rate 
to 1 to 2 to 3 to 4 

1:  Path following 90.5% ---- 4.0% 2.3% 3.2% 

2:  Target aligning 89.1% 6.4% ---- 2.3% 2.2% 
3:  Obstacle avoidance 88.3% 7.7% 2.0% ---- 2.0% 
4:  Stopping 98.7% 0.0% 1.3% 0.0% ---- 

 

 

4.5.4. Experimental Results with Assistance Based on Motion Intention Recognition 

As mentioned before, the resultant assistance is applied to each motion of a task.  

If the motion at a certain stage is path following, a hard fixture is applied so that the end-

effector can move along the path.  Once the motion has been changed into “aligning with 

a target” motion, hard fixture is replaced by an attractive force field.  For avoiding an 

obstacle, a repulsive force field is applied. If the motion is classified as stopping, no 

assistance is applied. In general, the shape of an obstacle is difficult to determine from 

the sensory information of the environment. So creating a desired path for obstacle  
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avoidance is not feasible.  This repulsive force field provides assistance for the operator 

to go around the obstacle. With these assistances, four users executed the same tasks for 

multiple times.  Every time, the system performance was consistent and had very little 

variation. Two random trajectories from different subjects are shown below.  The fixture 

helped significantly for path following, primarily due to the fact that the constraints 

applied to the PhanToM tool tip could force it to back up once there was some deviation 

from the path.  Most of the time, the velocity component was much smaller compared to 

the velocity component tangential to the path. The large orthogonal velocity occurs when 

the user is aligning with a target or avoiding an obstacle. 

 

 

Figure 4.16 Velocity Components with Assistance 

 

Time (ms) 
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Table 4.3 Performance Summaries with Assistance 

Path Error (mm) Execution Time(s) Subject 
Mean Stdev Mean Stdev 

1 5.1 0.5 12.6 0.7 
2 4.6 0.8 11.8 0.6 
3 5.3 0.9 12.9 1.2 
4 4.8 1.1 13.4 1.2 

 

 

Figure 4.17 Trajectories with Assistance 

 

4.6. Summary  

Hidden Markov Model is effective for the classification of random processes such 

as human’s motion intention in a teleoperation task. As long as the training set is 

sufficiently large, the motion recognition accuracy is close to 100%. The selected 

assistance based on the recognized motion is appropriate for each type of motion. The 
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experimental results without assistance have shown that the operator always has random 

errors that result in difficulty in following a path and aligning with a target. The 

experimental results with assistance showed that the undesired random errors were 

removed or reduced. The HMM based assistance is useful for improving performance 

accuracy and decreasing execution time. These results indicate that the appropriate 

assistance approach selection based on motion intention is possible. Based on the 

operator’s motion intention, it is possible to determine if an object is a target or an 

obstacle. In order to improve the recognition accuracy, the dimension number of the 

Hidden Markov Model can be expanded. As long as they all are independent, the added 

dimensions will only linearly increase the computational requirements. 
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Chapter 5:  Robotic Therapy for Persons with Disabilities Using Skill Learning   

This chapter describes the Hidden Markov Model (HMM)-based skill learning 

and its application in a motion therapy system using a haptic interface.  A relatively 

complex task, moving along a labyrinth, is used. A normal subject executes this task for a 

number of times and the labyrinth skill is learned by Hidden Markov Model. The learned 

skill is considered as a virtual therapist who can train persons with disabilities to 

complete the task.  Two persons with disabilities on upper limb (cerebral palsy) were 

trained by the virtual therapist. The performance before and after therapy training, 

including the smoothness of the trajectory, distance ratio, time taken, tremor and impact 

forces are presented in this chapter. This labyrinth can be used as a therapy platform for 

upper limb coordination, tremor reduction and motion control improving.   

5.1. Motion Therapy   

Much evidence suggests that intensive therapy improves movement recovery [78, 

79].   But such therapy is expensive, because it requires therapists on a person-to-person 

basis.  Recently, there has been an increased interest in restoring functions through robot-

aided therapy.   This approach is to design therapy platform, such as force fields and 

moving constraints, to substitute therapist’s work.  In this chapter, the role of the therapist 

is replaced by the learned skill. When humans execute a task, their actions reflect the skill 

associated with that task. When one does a particular task many times, each time the 
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performance is different even though it represents the same skill. For example, when one 

draws 50 circles of the same radius by hand, each circle will be different from the others 

although they may look close. But any one of the 50 circles is the result from operator’s 

circle-drawing skill. The different looking of these circles is due to the random control 

commands from brain and the random movements of hand. Since Hidden Markov Model 

is feasible to model a stochastic process, such as speech signal, it is possible to 

characterize the skill of the upper-limb motion for a specific task. In this dissertation, we 

have modeled the human movement along a labyrinth so that the underlying nature of it 

is revealed and can be used to transfer the skill to people with disabilities. It is desired 

that persons with disabilities can be trained for manipulation capabilities, which are 

incrementally improved through learning practice. Learning from observation is a 

paradigm where one observes other persons’ performance and learns from it. This is also 

like physical therapy for a specific disability.  

5.2. Hidden Markov Model Based Skill Learning                                             

In this dissertation, we model the motion of moving along a labyrinth task skill 

using HMM.  In order for the user to visualize the virtual therapist more effectively, the 

trajectory of the movement is chosen as the skill for learning. Since we only consider the 

movement in X-Y plane, position coordinates, Px and Py are used to represent the 

movement.  In chapter 4, it has been explained how to convert continuous velocity data 

into discrete symbols. Similar procedures are used in this chapter to convert continuous 

position data into discrete symbols. 
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5.2.1. Raw-data Conversion  

The raw data used by HMM for motion intention in chapter 4 is the user’s 

velocity.  In this chapter, the raw data is the translation trajectory, Px, Py.  In order to use 

discrete HMM, we still need to convert raw data into symbols. The procedures will be 

explained in this section.  

First of all, the translation trajectory is sampled by 1000Hz rate. Since Px and Py 

are independent vectors and processed in the same way, we just demonstrate the 

preprocessing procedures of Px. For simplicity, we use an example with less data. Let us 

assume that the position samples for a specific task result in the following 3 vectors.  

V1 = [45.8066   36.9727   19.1504   16.2247   19.1068   29.9084   40.7183 
17.3202 46.9558   31.8121   20.7432   39.3534 30.6080   24.9133   38.8958   34.7934]; 

V2 = [63.5857   76.5475   41.8072   70.4114   13.8365   78.3798   21.7158 
20.1863 70.0594   58.9845   10.9215    0.9405   71.5118   15.9310   23.8978   52.9154]; 

V3 = [13.6516   22.5228    3.1095   47.4401   27.9740   20.3278   24.7446 
16.0297 20.7795   10.8456   27.8307   36.4975   25.4315   30.7453   10.0353   18.2313]; 

The vector length is 16 points. In other words, we cut every 16 points and form a 

vector. These vectors are so called raw data. Their waveforms are shown in Figure 5.1. 

They do not have much useful information, just like our voice signal waveform in time 

domain. So we need to do some transformation. As illustrated in chapter 4, each raw data 

vector is multiplied by a Hamming window and then transformed by 16-point FFT. It is 

well known that the result of FFT is a symmetrical vector. So in order to reduce 

computation complexity, only half of the FFT result is used in PSD computation. The 3 

vectors shown previously are transformed into the following 3 vectors with 8-point 

length. 
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P1 = 104 *[1.0271 0.2550   0.0111   0.0010   0.0049   0.0241   0.0320  0.0154]; 

P2 = 104 *[1.8429 0.3981   0.0195   0.0518   0.1750   0.1967   0.0299  0.0931]; 

P3 = 103 *[5.8727 0.9417   0.1443   0.0256   0.0841 0.0292   0.0769]. 
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Figure 5.1 Raw-data Vectors 

Figure 5.2 PSD Vectors 
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If this task is executed 10 times, we will have 30 PSD vectors. For a simple task, 

we can use all these 30 vectors in the computations. But for general applications in real 

life, this number could be very huge. It is impossible to do the computations using all of 

these vectors. This is why we need to do vector quantization. As for as vector 

quantization, it is an algorithm to group vectors into different clusters according to the 

vector distance criteria. The number of the clusters is determined based on the application 

and accuracy. For some simple applications, usually 32 or 64 will be enough. The set and 

the number of the clusters are called codebook and codebook length. The clusters are 

called codewords of the codebook. The larger is the codebook length, the higher accuracy 

is the grouping. For this simple example, the length of the codebook for vector 

quantization is determined to be 4.  Figure 5.3 shows the illustration of vector 

quantization when the codebook length is 4.  In other words, the  vector quantization is to 

divide the whole vectors set into 4 clusters according to how the vectors are close to each 

other.  There are many available vector quantization algorithms in literature. The well 

known one is LBG [72]. 

 

Figure 5.3 Vector Quantization When Codebook Length is 4 
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Once the codebook is obtained, we can use it as a template to convert any vector 

into discrete symbols. As a matter of fact, the 30 vectors used in vector quantization can 

also be represented by symbols. If we represent each cluster by a symbol, (for example, 

“A” or “1” represents cluster 1, “B” or “2” represents cluster 2 and so on), we may 

express the 30 PSD vectors as “ABACDCDBACDCDABACDCAABDACDABDB” or 

“121343421343412134311241341242”.  This is the result of data preprocessing. When 

new vectors come in, they will be compared with codewords and placed into the 

corresponding clusters with which the vectors are closest, thus converting raw position 

data into discrete symbols. We did this so that we can use discrete Hidden Markov Model 

to do all computation.  

5.2.2. Hidden Markov Model Computation  

Let us assume that we executed this task 3 times to do skill learning. We need to 

determine which one of the three task executions represents our skill. For each task 

execution, the ir raw position data is preprocessed and converted into 3 discrete symbols. 

Let us assume that the symbols from the first task execution are “ABA”, the second one 

“CBD”, and the third one “BDB”. All symbols from these three task executions will be 

used as the training set. So the training set for HMM is “ABACBDBDB”. In order to 

explain the computation clearly, we use a two states left-right HMM as shown below. 

 

Figure 5.4 Two-state Left-right Hidden Markov Model 
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Before training, all parameters of HMM are initialized by randomly generated 

probability values, as shown below. 
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Using the training set “ABACBDBDB”, these HMM parameters are updated using the 

same algorithm explained in chapter 4. After training, the HMM parameters are: 
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The HMM with the adjusted parameters is shown in Figure 5.5: 

 

Figure 5.5 Hidden Markov Model with the Adjusted Parameters 

 

Once the HMM is trained by the training set, they can be used to evaluate any 

given observation sequence. The eva luation criterion is the forward score of a sequence 
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of observations given in a model. The forward score of a given observation sequence is 

computed as follows: 

                                     Niobi ii ≤≤= 1   ),()( 11 πα                                                                  (5.1) 
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where N is the number of states ( 2 in this case), T is the time corresponding to a symbol. 

For the HMM trained by the combination of the three-time execution data, we might as 

well evaluate the forward score of each task execution.  

For the first task execution, the observation sequence is “ABA”. The forward 

score of this observation set is computed as following: 

05.01.05.0)()1( 111 =×== Abπα  
2.04.05.0)()2( 221 =×== Abπα  

4
12211112 5.705.0]02.03.005.0[)(])2()1([)1( −=××+×=+= eBbaa ααα

1175.05.0]12.07.005.0[)(])2()1([)2( 22211212 =××+×=+= Bbaa ααα  

54
12121123 25.21.0]01175.03.05.7[)(])2()1([)1( −− =××+×=+= eeAbaa ααα

0472.04.0]11175.07.05.7[)(])2()1([)2( 4
22221223 =××+×=+= −eAbaa ααα  

0472.0)2()1()|( 332 =+== ααλABAOP  

So the forward score of the observation sequence “ABA” is 0.0472. 
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For the second task execution, the observation sequence is “CBD”. The forward 

score of this observation sequence is computed in the same way: 

3.06.05.0)()1( 111 =×== Cbπα  
05.01.05.0)()2( 221 =×== Cbπα  

3
12211112 5.405.0]005.03.03.0[)(])2()1([)1( −=××+×=+= eBbaa ααα  

13.05.0]105.07.03.0[)(])2()1([)2( 22211212 =××+×=+= Bbaa ααα  

43
12121123 375.325.0]013.03.05.4[)(])2()1([)1( −− =××+×=+= eeDbaa ααα  

0.00]113.07.05.4[)(])2()1([)2( 4
22221223 =××+×=+= −eDbaa ααα  

4
33 375.3)2()1()|( −=+== eCBDOP ααλ  

For the third task execution, the observation sequence is “BDB”. The same way, 

its forward score is: 

4
33 844.6)2()1()|( −=+== eBDBOP ααλ  

Since  

44 375.3)|(844.6)|(   0472.0)|( −− ==>==>== eCBDOPeBDBOPABAOP λλλ   

It can be concluded that the task execution with “ABA” observation represent the 

task skill more closely than the other two observation sequences. In other words, the task 

execution whose observation sequence has the highest forward score represents the task 

skill. 

 

5.3. Experiments in Virtual Environment   

5.3.1. Tasks and Experimental Test-Bed 

To evaluate the validity and effectiveness of the HMM for skill learning and its 

application for therapy, we designed a haptic interactive simulation test bed (Figure 5.6). 
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It is composed of a visualization scene and a PhanToM Premium 1.5 [48]. The PhanToM 

is an impedance haptic device that can provide force reflection to operators if collision 

happens. The simulation scene is realized through API functions of GHOST [48]. The 

end-effector is simulated as a sphere whose radius is 5mm. The width of the labyrinth is 

18 mm. In this experiment, the task is defined to move the end-effector from the origin 

(0, 0, 0) to get out of the labyrinth as quickly and smoothly as possible, and with as few 

collisions as possible. In order to avoid the depth perception problem, operators are only 

allowed to move in the X-Y plane by adding a planar constraint to the haptic device. 

Bardorfer et al used this haptic interface to do motion analysis of upper- limb for patients 

with neurological diseases (ND), but they did not try to improve the manipulation 

performance [80]. 

 

Figure 5.6 Virtual Environment for Simulation Test-bed 
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5.3.2. Skill Learning and Transferring 

HMM is used to model the translation skill of moving along the labyrinth. The 

learned skill is later used as a virtual therapist in motion training.  This task was executed 

twelve times to produce the training set for HMM by a normal subject.  The translation 

data of the end-effector is recorded and converted into discrete symbols using the 

preprocessing approach as illustrated in section 5.2.1. The discrete symbols of these task 

executions are used to train HMM. Once the HMM has been trained, it can be used to 

evaluate each task execution. The set of symbols that produce the largest forward 

likelihood P(O|M) correspond to the motion that is most likely executed by the normal 

subject. In other words, it represents the skill needed by that specific task. We use a 5-

state, left-right, two dimensional HMM for skill learning. So the prior matrix π  is a 1×5 

matrix, the transition matrix A is a 5×5 matrix with each row representing the transition 

probability from a certain state to other states. It is necessary to note that we have two 

observability matrices B, each of which is 256×5. π , A and B matrices are initialized by 

the uniformly distributed random number as usual.  Starting with these initial parameters, 

the HMM is trained by the training test.  The forward algorithm was used to score each 

trajectory (Figure 5.7).  It can be seen that No. 7 is the highest and No. 6 is the lowest in 

the probability values. It is important to note that the best (highest) or worst (lowest) 

scores do not refer to the performance, but to the accuracy of representing the skill of 

doing the task.  For example, if we are asked to draw many line segments with the same 

direction and length, it would be likely that we would draw a couple of close to perfect 

ones and a couple of very bad ones.  But these extreme cases do not represent our line-

drawing skill. The lines that we are most likely to draw represent our line-drawing skill. 
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The trajectory with the highest score represents the translation skill of the subject most 

likely to do this task. 
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Figure 5.7 Forward Scores for all 12 Times of Task Execution 

 

5.4. Motion Therapy Experiments 

 Since the skill of this task has been learned, the trajectory of the learned skill is 

displayed on the screen acting as a therapist.  During the therapy training session, 

operators try to follow it as accurately as possible (Figure 5.6).  Two subjects:  one is 

female, cerebral palsy with right hemiparesis and spasticity, persistent low back pain; the 

other is male, 19, cerebral palsy, partial paralysis of his upper and lower extremities, 

executed this task seven times each before and after training. Before collecting data, they 

practiced this movement for several times until they felt comfortable about it. Their data, 

including translation, velocity and reaction forces, were sampled at 1000Hz.  The 

evaluation indexes include: 
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• Distance ratio Rd. Its value reflects the trajectory optimization capabilities. The 

smaller, the better. The ideal value is a little greater than 1. 

                                           
skill

actual
d d

d
R =                                                          (5.4) 

 where dactual is the actual distance traveled, dskill is the distance traveled by the 

 learned skill. 

• Time taken to complete the task T; 

• Number of collisions with walls Nc; 

    
                ,0

      ,1
)(





=
elsewhere
with wallCollide

nC                        (5.5) 

         ∑ =−+=
j

c jCjCN )1)()1((                               (5.6) 

• Time duration of the collisions Ti. It reflects reaction capabilities. 

                                 1)()1(,1)()1(, =−+−=−+ −= jCjCjjCjCji ttT                      (5.7) 

• Impact force of the collisions with walls Fi; 

                                            2
,

2
, yixii FFF +=                                                  (5.8) 

 where Fi,x and Fi,y are impact forces when the end-effector collides with the X-

 direction wall and Y-direction wall respectively. 

• Tremor magnitude Mt and frequency Ft. 

 

 For motion analysis, operator’s collisions with X-directional wall and Y-direction 

wall do not make much difference. So only the magnitude of impact force is analyzed. 

The direction of impact force is not meaningful. Tremor information is extracted by 
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applying a high pass filter, which has a cut-off frequency fc = fmax/10 (fmax is maximum 

tremor frequency). Tremor magnitude is available in time domain. The tremor frequency 

can be obtained through discrete Fourier transform (DFT). The collision forces along X- 

and Y-axes are combined and the magnitude of the combined force was analyzed. C(n) 

indicates the case when collisions occur. Nc is the number of collisions occurring during 

task execution. Ti is the time duration of each collision.  Nc and Ti are obtained through 

checking the transition of C(n) between 0 and 1. 

 

5.4.1. Motion Performance before Therapy Training 

Two persons with disabilities performed the task before and after therapy training. 

Figures 5.8, 5.9, and 5.10 present the performance of subject 1 before training. Figure 5.8 

shows an actual trajectory and the skilled trajectory. Figure 5.9 shows the translation 

tremor along X and Y-axes, including tremor magnitude and frequency.  Figure 5.10 

presents the collision information, including the impact force and the time duration for 

each collision occurring.  
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Figure 5.8 Actual Moving Distance is 716.8mm, Skill Moving Distance is 495.2mm, and 
Distance Ratio is 1.44 
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Figure 5.9 Tremor Measurements. X tremor magnitude mean is 8.4mm and STD is 
6.9mm. Y tremor magnitude mean is 9.3mm and STD is 8.8mm 
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Figure 5.10 Collisions: 15 Collisions Occurred. The max time duration is 5.87s and the 
minimum is 0.14s.  The max impact force is 1.01N and the minimum is 0.15N 
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5.4.2. Motion Performance after Therapy Training 

After therapy training, the data for each subject was collected. The analysis for 

subject 1 is presented in Figures 5.11, 5.12, and 5.13.   
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Figure 5.11 Trajectories after Therapy Training 

Actual Moving Distance is 619.3 and Distance Ratio is 1.25 
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Figure 5.12 Translation Tremors After Therapy. X-axis Tremor Magnitude Mean Is 5.27 
mm and STD Is 3.93. Y-axis Tremor Magnitude Mean Is 6.71 and STD Is 4.41 
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Figure 5.13 Collisions After Therapy. 6 Collisions Occurred. The maximum impact force 
is 0.39N and the minimum is 0.18N 
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The X-Y plane trajectory presents movement quality.  The smoothness reflects the 

capability of controlling the end-effector during movement. The tremor information plots 

present tremor magnitude, without considering its direction since magnitude is more 

meaningful than direction. The tremor frequency was always low, 2-3 Hz for the two 

subjects.  Impact force occurs when there is a collision.  Generally, the impact force is 

related to the smoothness of the trajectory. The smoother the trajectory is, the smaller the 

tremor magnitude is. The time duration of each collision indicates the reaction to 

collision. From figures 5.8 and 5.11, it can be seen that the trajectory was improved 

significantly. Figures 5.10 and 5.13 show the collision information before and after the 

therapy training, respectively.  As we can see, the numbers of collisions, the collision 

durations and the impact forces were decreased. Though the tremor magnitude was 

reduced considerably, the tremor frequency was about the same. This is due to the fact 

that tremor frequency is not observable to the user. Before and after therapy training, 

seven trials of execution data were collected for each subject. The performance summary 

is presented in Table 5.1. 
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Table 5.1 Movement Performance Summary 

 
Subject 1(Femal, cerebral palsy with 
right hemiparesis and spasticity 
(Mean / Std) 
 

Subject 2(male, 19, cerebral palsy, 
partial paralysis)  
(Mean / Std)  

Before Training After raining Before Training After Training 

Length Ratio 
R 1.68/0.35 1.16/0.27 1.46/0.24 1.12/0.17 

Time 
taken(s) 25.35/3.78 16.99/2.08 18.03/2.80 12.04/1.58 

Collision 
Numbers 17.57/4.70 10.43/3.87 13.42/3.05 8.77/2.49 

X tremor 
Mag-(mm) 10.47/4.86 4.26/2.33 7.77/3.61 5.13/2.03 

Y-Tremor 
Mag-(mm) 10.21/6.72 6.43/2.15 8.42/4.34 5.43/1.93 

Tremor 
freq(max) 3.5Hz/-- 3.4Hz/-- 2.8Hz/-- 2.5Hz/-- 

MaxTime 
Duration(s) 4.87/1.59 2.15/0.86 3.04/1.33 1.96/0.65 

Impact 
force(max,N) 1.02/0.53 0.71/0.33 0.89/0.35 0.65/0.20 
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5.5. Summary   

In this chapter a HMM based approach for labyrinth moving skill learning and 

transferring of the learned skill to persons with disabilities is presented. The two 

dimensional model is built for the XY plane translation.  The learned skill is not the best 

or the worst one of the numerous task executions, but the one that the operator is most 

likely to do.  That is, the most natural one. The learned skill was used as a virtual 

therapist for persons with disabilities. Persons with disabilities were asked to follow the 

“virtual therapist” as closely as possible. The difference between the subject and the 

“virtual therapist” provides visual feedback which helps the eye-hand coordination 

control capability. After several times of therapy training, operators could control the 

end-effector better, and hence reducing collisions and making the trajectory smoother. 
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Chapter 6: Conclusions and Recommendations  

6.1. Dissertation Overview   

An intelligent teleoperation system using assistance functions was developed to 

improve task execution efficiently and to decrease the execution time.  The approach was 

guided by the philosophy that the human operator should remain in the control loop of 

the slave manipulator, thus using human intelligence for the telerobotics system control. 

A common rehabilitation evaluation task, “Box and Blocks” was tested using 

teleoperation assistance functions. The results showed how the desired motion was kept 

or sometimes augmented and how the unwanted motion was reduced. Complex 

telemanipulation tasks were decomposed into general and relatively simple subtasks: 

following a path, aligning with a target, avoiding an obstacle and stopping. Hidden 

Markov Model was used to classify human motion intention into one of the four classes. 

For different subtasks, appropriate assistance was applied to enhance the input from 

master device.  Another rehabilitation-robotics application is motion therapy. Using 

HMM, a labyrinth movement skill was learned by the robot. The learned skill then acted 

as a virtual therapist and two persons with disabilities on upper limb were trained using 

this approach. The skill learning based robot therapy and its effectiveness were discussed.  

6.2. Virtual Fixture Assistance Based on Motion Intention  

In telemanipulation systems, assistance through variable position and velocity 

mapping or virtual fixture can improve manipulation capability and dexterity.  This 
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assistance is useful not only for path following, but also for aligning with targets and 

avoiding obstacles.  Conventionally, such assistance is based on the environmental 

information and without knowing the user’s motion intention. In this dissertation, user’s 

motion intention is combined with real- time environmental information to apply 

appropriate assistance. If the current task requires following a path, a hard virtual fixture 

orthogonal to the path is applied.  Similarly, if the task is to position a target, an attractive 

force field is produced to provide a guide for approaching.  

Hidden Markov Model is effective for motion classification.  As long as the 

training set is sufficiently large, the motion recognition accuracy is close to 100%. The 

assistance is appropriately selected based on the recognized motion. The experimental 

results without assistance showed that the operator always had random errors that 

resulted in difficulty in following a path and positioning a target. The experimental 

results with assistance showed that all those undesired random errors were removed or 

reduced.  The HMM based assistance is useful for improving performance accuracy and 

decreasing execution time. In order to improve the recognition accuracy, the Hidden 

Markov Model can be expanded. As long as they are independent, the added dimensions 

linearly increase the computation complexity.  

6.3. Robot Therapy and its Effectiveness 

A HMM based approach for labyrinth moving skill learning and transferring the 

learned skill to persons with disabilities on their upper limb was presented. The 

multidimensional model is built for the learning X-Y plane translation skill. The learned 

skill was used as a therapist for persons with disabilities. They need to follow the “virtual 



www.manaraa.com

 93

therapist” as close as possible. The difference between the subject and the “virtual 

therapist” provides visual feedback that helps the eye-hand coordination control 

capability. During the training process, the trajectory smoothness did not improve 

significantly even though the user had less collisions and shorter execution time. This 

could be due to the fact that operators tend to quickly withdrawn the ball after the 

collision to follow the continuously updated trajectory. After many repetitions of therapy,  

operators were able to control the end effector to avoid collisions and make the trajectory 

smooth. They displayed some movements to avoid unnecessary body arrangements and 

postured themselves accordingly. The purpose of therapy is to restore some of the lost 

functions of persons with disabilities. This robot-aided therapy emphasizes the movement 

control through eye-hand coordination training learned from normal subject’s 

performance. This compensation allows persons with disabilities to improve upper limb 

coordination; tremor reduction and motion control capabilities. 

6.4. General Discussion 

Overall, when applying teleoperation assistance, the performance of subjects with 

disabilities can be enhanced. The results of the various experimental results were 

promising, and indicated that the proposed assistances techniques have real potential in 

speeding up the execution of a variety of tasks, improving operation accuracy and 

reducing operator’s fatigue.  The Hidden Markov Model based skill learning proposed a 

new approach for motion therapy. While physical therapy directed by a therapist restores 

the lost motion through physical exercise, robot therapy supervised by a ‘virtual 

therapist” improves eye-hand coordination by learning from a demonstrator.  



www.manaraa.com

 94

6.5. Recommendations  

The assistance algorithms were tested by using simulation platforms. It is 

recommended to use a robot manipulator to test for a variety of real rehabilitation tasks. 

These tests could be implemented on the workstation-based teleoperation system, which 

consists of a PhanToM Premium 1.5 and PUMA or RRC manipulator, both of which will 

be available in our laboratory. Although teleoperation assistance provides very valuable 

assistance for complex task execution, autonomous execut ion for some repetitive tasks 

requiring accurate fine tuning movement is recommended. For the robot system in our  

lab, computer vision can be configured to implement visual servoing for target grasping.  
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This chapter presents the system test bed at rehabilitation robotics lab which is 

used by this project. The hardware and software used in the project will be introduced. 

A.1. Introduction   

The previously outlined concept was implemented on the hardware and software 

in this laboratory.  This chapter describes the hardware used to test the new assistance 

strategy and the software we used in the testbed. 

 

A.2.   Hardware  

During the course of this project, it was necessary to reconfigure the previously 

constructed telerobotic system used by students at University of Tennessee at Knoxville 

[29].  The Kraft Master Hand Controller has been replaced by a PHANTOM premium 

1.5. The currently used hardware and corresponding schematic are described in this 

section.  

A.2.1. Robotics Research Corporation Manipulator 

The Rehabilitation Robotics and Telemanipulation Laboratory in the Mechanical 

Engineering Department at the University of South Florida uses a seven-degree of 

freedom robot manipulator from Robotics Research Corporation (RRC), model k-2107, 

as the remote manipulator.  The manipulator has seven revolute joints boasting a 

redundant joint for obstacle avoidance. 

Joints 1, 3, 5, and 7 are roll type joints, while 2, 4, and 6 are wrist type joints.  The 

total length of the arm when all the joints are positioned forward, such as Figure A.1, 
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reaches 2.1 meters, about seven feet.  Figure A.1 also shows the schematic of the robot 

manipulator’s seven joints including and location of each joint and their respective travel 

limits.  The travel limits are displayed in table A.1.  The motions of the seven revolute 

joints and an end-effector are displayed in figure A.2.  Figure A.3 shows a picture of the 

complete telerobotic system including the actual mounting of the robot manipulator on 

the horizontal plane that is not reflected in the previous figure. 

 

 

 

Figure A.1 RRC Manipulator Joints and Limits 
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Table A.1 Joint Limits for the RRC Manipulator 

Joint Number Lower Limit Upper Limit 
1 +180 -180 
2 +135 -45 
3 +180 -180 
4 0 -180 
5 +360 -360 
6 0 -180 
7 +1080 -1080 

 

 
Figure A.2  RRC Manipulator 

 
The manipulator uses a PC based controller.  The controller uses inputs from the 

computer’s graphical user interface (GUI) or the teach pendent as the reference position 

for each of the seven joints.  From these positions, the inverse kinematics is calculated, 

and seven joint commands are determined and sent to the low level controller.  The robot 

controller is capable of position, velocity, and torque control for the motors for each of 

the seven joints to maintain the appropriate joint angles of the manipulator.    
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Figure A.3  RRC Manipulator with Sensors and End-Effector  

 
 
A.2.2. PHANTOM Premium 1.5 

 

Figure A.4  PHANTOM Premium 1.5 
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Developed by SensAble Technologies [48], the PHANTOM device represents a 

resolution in human computer interface technology. Prior to its invention, computer users 

only had the capability to interact through the sense of sight, and more recently, sound. 

The sense of touch, the most important sense in many tasks, has been conspicuously 

absent. The PHANTOM device changes all of this. Just as the monitor enables users to 

see computer-generated images, and audio speakers allow them to hear synthesized 

sounds, the PHANTOM device makes it possible for users to touch and manipulate 

virtual objects. The PHANTOM haptic interface is distinguished from other touch 

interfaces by what it is not. It is not a bulky exoskeleton device, a buzzing tactile 

stimulator nor a vibrating joystick. PHANTOM application areas include medical and 

surgical simulation, geophysics and nanomanipulation. The device used in this project is 

a premium 1.5, whose spec is as follows: 

Table A.2 PHANTOM Premium 1.5 Specifications 

Workspace 7.5 x 10.5 x 15 inches/19.5 x 27 x 37.5 cm 

Range of motion Lower arm movement pivoting at elbow 

Nominal position resolution 860 dpi / 0.03 mm 

Back drive friction 0.15 oz / 0.04 N 

Maximum Exertable Force 1.9 lbf / 8.5 N 

Continuous Exertable Force 0.3 lbf/ 1.4 N 

Stiffness  20 lbs./in / 3.5 N/mm 

Inertia < 0.17 lbm  < 75 g 

Footprint  10 x 13 inches / 25 x 33 cm 

Force feedback x, y, z(3DOF) 

Position sensing  x, y, z translation and rotation (6DOF optional) 

Interface Via Parallel Port 

Supported platforms Intel-based PCs 
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A.3.   Software  

Several independently running programs on various computers make up the 

software which acts to simulate telemanipulation and control this telerobotics system. 

The code includes that supplied by RRC manipulator manufacturer, purchased as general 

purpose software, and written in the lab.   

A.3.1. R2 Controller Program 

The R2 controller is developed on the basis of real-time motion controller, 

supporting virtually any robotic mechanism with minimum software changes. It is 

completely configurable through the use of text configuration files with respect to 

manipulator and control hardware [83].  The R2 controller provides a server-client 

TCP/IP protocol interface, which indirectly utilizes the Dynamic Host Configuration 

Protocol (DHCP) service and the Windows Internet Name Service (WINS) for dynamic 

mapping of network names and address. A third party application can interface to the R2 

server and the R2 real-time controller via the R2 Server API server-client protocol.  All 

the motion controller commands are supported in the R2 Server so that the manipulator 

can be directed from either a client remotely via an Ethernet communication or an inter-

process communication protocol. This API decouples the higher-level control 

development from the lower level motion controller.  

A.3.2. HALCON Computer Vision Software  

HALCON is commercial software for machine vision application, which has 

flexible architecture for rapid development of image analysis and machine vision 
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applications. HALCON provides a library of more than 1100 image processing operators 

with outstanding performance for blob analysis, morphology, pattern matching, 

metrology, 3D calibration, and binocular stereo, to name just a few [77].  For example, if 

we need to get image edge, we can choose “Sobel”, or “Canny” edge detector to do that. 

Also Halcon supports most of the currently used frame grabbers. We can just call 

“open_framegrabber” and “grab_image” functions to get real-time image. Components in 

Halcon are independent objects in the C++ object and VB modules which can be used by 

users for application development.  The image acquisition and processing program can be 

developed in the integrated development environment (shown in Figure A.5). But 

usually, in order to implement some complex computation, the program edited in Halcon 

operators is converted into C++ or VB in which user’s algorithm can be done easily.  In 

this project, the image processing program and the data communication are developed 

using VC++. 

 

Figure A.5 Integrated Development Environment of Halcon 
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A.3.3.Telerobot Control Interface 

This is the main control program to implement telemanipulation system. It is a 

client of the R2 controller TCP/IP Server-Client architecture via Ethernet 

communication. It is developed in VC++ to get the Cartesian 3D position and velocity of 

the master input device, PHANTOM premium 1.5.  Two different operation modes are 

available: one is the position mapping; the other is the velocity mapping, working like a 

3D joystick. Also for visual servo controller, this program gets 3D pose of the target and 

sends the corresponding visual servoing velocity commands to the R2 controller.  

 

Figure A.6 Telemanipulation Interface 



www.manaraa.com

 
 
Appendix A (Continued) 
 

 113 

 

A.3.4. Teleoperation System Architecture  

                                                                                                                                                                                      

 

 

A.4. RRC GUI 

The graphical user interface (GUI) is provided by RRC.  The RRC GUI includes 

jog control, program control, position feedback, client management and file management.  

This section describes the features of the RRC GUI.  Figure A.8 illustrates the different 

windows, in a custom arrangement.  The main window is shown in figure A.9.     

   

Figure A.7 Teleoperation System Architecture 
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Figure A.8 RRC Graphical User Interface 

 

 
Figure A.9 RRC GUI Main Window 
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A.4.1. Safe Operating Instructions  

As with any machine, a list of guidelines and instructions describes how to safely 

operate the robot and avoid causing injuries to humans, the robot, or the environment.  

Upon integrating the many components of the robot controller interface, a list of 

instructions was developed for the operation of the RRC manipulator.  Not only do these 

instructions provide details for future users, it also points out the many features of the 

RRC GUI.  There are three different modes in which to operate the robot: simulation 

mode, robot mode, and PHANToM client mode, explained in the flowing sections.   

A.4.1.1. Simulation Mode  

Instructions were developed for safe operation of the simulation of the telerobotic 

system.  This mode has all the capabilities of the system without sending any commands 

to the RT Servo Controller.  The following is a list of step-by-step instructions to safely 

operate the robot in simulation. 

1. Flip the power switch on the back of the controller box to the "On" position. 

2. Press the green controller on button to turn on the controller. (Press cont roller off 

to turn off).  See figure A.10.  

3. To operate the robot in simulation, make sure the main.cfg file has the simulation 

turned on, do this by the following steps. 

4. Open the file to edit: \config\main.cfg (Right click on the icon)  

5. On the second line, the simulation statement must read:  “Simulation = (On).”   

6. When the simulation is turned on, double click on the R2server.exe icon on the 

desktop.  See figure A.11. 
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7. Once the message says “Servo Initialized for Type 2 upgrade,” then double click 

on the R2GUI.exe icon on the desktop.  See figure A.11. 

8. Click the position feedback on the R2controller window to see the position of the 

seven joint angles and the global Cartesian coordinates of the robot. 

9. To see visual simulation, double click on Solidworks file on the desktop of the 

PHANToM computer called:  1207iFA.SLDASM 

 

Figure A.10 Controller Buttons 

10. Click on RRC Simulation / Feedback Simulation, and then click connect.  The 

robot should follow the same configuration of the robot position feedback 

window on the controller computer. 

11. There are three different coordinate systems in which to jog (move) the robot:  

Joint space, hand space, and linear space.  Choose linear for most applications. 

12. The teach pendant allows for jogging as well.  It works in conjunction with the 

jog control buttons on the screen.   

13. To quit, first close all windows on the controller computer, and then terminate the 

R2.RTA process by clicking on the RT Process Manager (See figure A.11) and 

clicking local.  Find the line with R2.RTA, and click: Kill Process. 
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Figure A.11 Desktop Icons on Robot Controller Computer 

A.4.1.2. Robot Mode  

Instructions were developed for safe operation of the telerobotic system where all 

commands are sent to the RT Servo Controller.  Some instructions are similar, so those 

steps are not repeated.  The necessary instructions are as follows. 

1. To operate the robot, turn the simulation off by changing the main.cfg 

configuration file.  The icon is on the desktop, figure A.11. 

2. Open the file to edit: D:\config\main.cfg. 

3. On the second line, the simulation statement must read:  "Simulation = (Off)." 

4. Follow the same instructions for when the simulation is turned on.  

5. Once the GUI is activated, the Enable Arm window will appear.  Click the 

"Enable Arm" button, and then the computer will count for 20 seconds. 

6. Upon being aware of the robot and its location, press the green machine start 

button, see figure A.10.  If this is not done before the computer counts to 20 

seconds, the Machine Start button will not activate the robot, and step 5 will need 

to be repeated.  This is incorporated as a safety mechanism.  The red e-stop button 

must be attended whenever the robot is enabled. 
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7. Now the robot is enabled, and the homing process can begin. 

8. The teach pendant will show the seven joints.  Move each joint separately to 

accommodate the joint angles for home position in table A.1.  Once a joint has 

reached its home position, the computer will beep.   

9. Once all the seven joints are in the home position, press and hold the red CNL 

button on the teach pendant until the homing window disappears.  The robot will 

move a little bit to settle in the appropriate home position.  Then start using the 

GUI functionality. 

A.4.2. Jog Control 

Jog control allows the user to manipulate the robot incrementally.  Since the 

simulation acts as a client to the server, the jog control feature also controls the 

simulation as well.  Jog control, shown in figure A.12, offers three different types of 

coordinate frames in which to move the robot, linear space, joint space, and hand space. 

In linear movement, the user can activate the jog buttons and give commands to 

move in any axis in the Cartesian coordinate system, X, Y, and Z, and also adjust the 

orientation, roll, pitch and yaw.  The GUI takes the commanded position and orientation 

in Cartesian coordinates and calculates the inverse kinematics to determine the low level 

commands to control the joint angles.  Since there are six commands corresponding to the 

six degrees of freedom to define position and orientation, the seventh command is called 

orbit.  The orbit command changes the joint angles of the manipulator while leaving the 

position and orientation of the end-effector unchanged.  The speed in which the jogging 
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of the robot in linear space can be adjusted to run fast or slow, while the recommendation 

remains to operate the robot at a safe velocity. 

 

Figure A.12 Jog Control Window and Position Feedback Window 

Another coordinate system is called joint space.  Each of the seven jog buttons 

corresponds with its same numbered joint.  For example, when the operator presses the 

+1 button, joint number one will change its angle in the positive direction, according to 

the velocity set by the user.  During the homing operation, the joint space is used to 

adjust the joints individually to achieve the home position of the robot.  This feature is 

advantageous, especially when the configuration of the robot needs to be adjusted 

slightly.   
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The last coordinate system is called hand space.  This coordinate system changes 

with the orientation of the end-effector.  The hand X, Y, and Z-axes are fixed on each of 

the three orientation axes: roll, pitch, and yaw.  This is the coordinate system used in 

teleoperation.   

A.4.3. Position Feedback 

Position feedback is offered as another window in the GUI environment, shown in 

figure A.12.  This window simply displays the current position of the robot.  The values 

of each of the seven joints are displayed, as well as the corresponding position and 

orientation in the base coordinate frame.  The current Cartesian coordinates are calculated 

from the manipulator’s kinematics, according to its joint angles.  These joint angles are 

received from the feedback of the manipulator.  Resolver boards receive the seven joint 

angles, and send the exact feedback position to be displayed in the feedback window.  

This information is helpful to the user especially when operating the robot under 

simulation.    

A.4.4. Teach Pendant 

The teach pendant, figure A.12, is a hand held control device for operating the 

robot manipulator.  The teach pendant is hooked up to the computer and provides real 

time control of the robot under the jog control mode.  Once “Enable jog buttons” is 

activated in the RRC GUI jog control window, figure A.12, the teach pendant buttons are 

activated and coincide with the commands from the GUI on the computer screen.  The 
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teach pendant allows the user to adjust the speed of the robot and change the coordinate 

system, as well as move the robot.  Since the teach pendant operates in conjunction with 

the jog control buttons, fourteen buttons for the direct operation of the robot, depending 

on the coordinate system, are present on the hand held teach pendant.  The advantage of 

using the teach pendant over the RRC GUI's jog control is that the operator can be away 

from the computer observing the robots movements without being obstructed by the 

computer monitor.          

  

Figure A.13 Teach Pendant for RRC Manipulator 

A.4.5. Program Control 

Most robot manipulator control programs have the ability to program the robot 

through a graphical user interface or a teach pendant, to perform a series of movements to 

predetermined points.  This is automating the robots motions.  The GUI for the RRC 

manipulator has this function called, Move Data/Record.  The robot can be programmed, 
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once moving there, to record a point in space.  It saves the joint angle configuration 

corresponding to the appropriate x, y, z, and the rotation in x, y, and z.  A series of these 

recorded points can be programmed and executed to perform a certain automated task.  

For example, in the case of teleoperation, the teleoperator would like to change 

the tool on the end of the robot.  This would require the teleoperator to position and align 

the robot to exchange tools.  This process is advantageous to have automated before the 

teleoperator begins the tasks, so that in the event of a necessary tool change, the operator 

needs only to select which tool is the desired tool for the next task, and the robot can 

switch tools at the supervision of the teleoperator, instead of changing tools in 

teleoperation.   

The operator must define the points that determine the automated path.  The 

objective is to use the teach pendant or the jog control of the RRC GUI to move the 

manipulator to the desired points and record the points by clicking "Record" on the move 

window, see figure A.14.   

From the RRC GUI main window of commands, figure A.9, check the box for 

move / data record, and a window shown in figure A.14 will appear.  Click create path, 

and the program requests a path name.  Recorded points can now be added the path.  

Click on the execution and the program status check box to reveal the path name and the 

recorded points, and to monitor the progress of the path execution, see figure A.16.  
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Figure A.14 MainWindow for Move Data / Record 

 

 
Figure A.15 File Management 

Paths or a group of paths can be saved using the file management window, figure 

A.16.  For example, in figure A.16, the path name is called "mountain."  This path can be 

saved in a file and opened again at another time.  Through program control, repetitive 

paths can be automated with a high degree of precision.   
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Figure A.16 Execution and Status Windows 

 

A.4.6. Client – Server Interface 

In the RRC GUI, the client management window displays the list of connected 

clients.  Clients can be either active or passive.  Every client is passive until made active 

by clicking the activate button in the client management window, figure A.17.  Only one 

client can be active at once.  Once a client is activated, that client can send commands to 

the RT servo controller, and receive position feedback data.  The R2 server ignores the 

commands from a passive client.  However a passive client can request feedback data 
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from the server, and will receive the most recent position feedback data. The active or 

master client has control over the robot, whether it is in simulation or robot mode.   

 

 
Figure A.17 Client Management Window on Robot Computer 
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This chapter presents the strategy of enhancing teleoperation through Tele-

autonomy.  The basic theory and the application of robot vision are also presented.  

B.1. Configuration of Vision System 

 

Figure B.1 Configuration of Vision System  

 
 

In the previous research of this lab, the camera was mounted paralleled with the 

end-effector coordinate system. In that case, only the translation along Z-axis was taken 

into account for object pose determination.  It was easy to get the relative translation 

between the two coordinates system by coarse measurement, not doing eye-hand 

calibration.  But the disadvantage of that configuration is that the camera could not see 

the object when the end-effector is approaching it, thus limiting the usefulness of the 
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vision system.   In this project, in order to improve the flexibility of task execution and 

keep object in the camera view always, the camera is mounted to the end-effector with 

some translation and rotation (See Figure B.1).  In order for the manipulator to use a 

camera to estimate the 3D pose of an object relative to the end-effector, calibration of the 

vision system, including camera calibration and eye-hand calibration are essential. 

B.2.   3D Pose Determination of Target with Respect to End-effector 

Generally, in order to control robot using information provided by a computer 

vision system, it is necessary to understand the geometric aspects of the imaging process.  

Each camera contains a lens that forms 2D projection of the scene on the image plane 

where the camera is located.  This projection causes direct depth information to be lost so 

that each point on the image plane corresponds to a ray in 3D space.  Therefore, some 

additional information is needed to determine the 3D coordinates corresponding to an 

image point. This information may come from multiple cameras, multiple views with a 

single camera, or the knowledge of geometric relationship between several feature points 

on the target.  In this project, the results of the shape-based matching, position 

coordinates (u, v), orientation θ and scale factor s, enable us to determine the 3D pose 

with 4 unknowns.  

According to perspective projection, a point, cP=[x,y,z] T  , whose coordinates are 

expressed with respect to the camera coordinate system, C, is projected onto the image 

plane with coordinates p=[u,v]T , given by 

                                                     







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






y
x

z
f

v
u

                                                         (B.1) 
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Figure B.2 Coordinate System for Perspective Projection 

 

We assign the camera coordinate system with the x- and y-axis forming a basis for the 

image plane, the z-axis perpendicular to the image plane (along the optical axis), and with 

origin located at the distance λ( or f ) behind the image plane, where f is the focal length 

of the camera lens. This is illustrated in Figure B.2.  

We assign the tool coordinate system at the origin of the ROI (Region of 

Interests) of the object.  So the coordinate values of the origin O is )0.0 ,0.0 ,0.0(=oO . 

Let’s assume there is a line segment located between O and P(m, 0, 0) in the tool 

coordinates. 

                                          T
o mOP )0,0,(=                                                        (B.2) 

When creating shape model, it was assumed that the tool coordinate system is aligned 

with the end-effector except the translation along Z-axis (see Figure B.2).  So the 

coordinate of the tool origin of the ROI is (0, 0, Z0). 
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Figure B.3 Coordinates System Assignment for Vision System 

 

When capturing dynamics images, the predefined line segment OP is moved to the 

coordinates as follows with respect to the end-effector system: 
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As we have obtained the eye-hand transformation cHe, the coordinates of line segment 

OP can be transformed into camera coordinates system as follows: 
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where [cRe, cTe] is the eye-hand transformation matrix. In order to clearly express the 

transformation relationship, we might as well use symbols for the transformation matrix 

elements, instead of numbers. 

In equation (B.4), if we let m=0, α = 0, we can get the coordinates of the tool 

system origin with respect to the camera system: 
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The perspective projections of the point Oc and Pc are as follows: 
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The perspective projection of line segment OP in image plane is also a line segment op. 

In equations (B.6) and (B.7), if we let X=Y=0, Z=Z0 and α = 0, we can obtain the 

perspective projection of line segment OP during shape model creating (Figure B.4): 
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Figure B.4 Perspective Projection of a Line Segment in Image Plane 

 

The projection of line segment OP at the initial creating shape model stage and 

dynamics vision are shown above as o0 p0 and o1 p1:       
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                          (B.10) 

 

Obviously, the orientation of a line segment between the ROI origin and a point on the 

bounder of the ROI represents the orientation of the model ROI. So orientation parameter 

θ out of the shape model matching equals to the angle between o0 p0 and o1 p1.      
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In order to simplifying computation, we replace some long factors by single symbols.                                         
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The symbols replacement results in:  
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where                                    
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After submitting b1,  b2,  b3 into equation (B.13), we can see factor m is canceled out 

(equation (B.15)), thus proving the orientation is not related to the length of the selected 

line segment. This makes sense.   
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where 
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In equation (B.16), there is only one unknown, that is α. It can be solved straightforward 

after some algebra operation. 
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In is necessary to note that there are two solutions for α from equation (B.15). Based on 

the simulation results, the solution shown in equation (B.17) is true; the other one is false 

solution and thrown away.  

For each frame of input image, orientation θ out of the shape model matching 

function is known, so the orientation α of the model around the Z-axis of the end-effector 

coordinate system is a function ofθ. 

The scale factor s out of the shape model-matching algorithm represents the area 

ratio between the extracted model ROI from the input image and the pre-created model. It 

is assumed that the area of the model ROI is A. While creating shape model, the 

translation of the tool coordinate system along the Z-axis of the end-effector coordinates 
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system is Tz,0. Projecting this object into the plane whose normal is parallel with the 

optical axis of the camera yields the projected model shape, which has area as: 

                                                       γcos0, AAo =                                                       B.19) 

where γ is the angle between the Z-axis of end-effector coordinates system and the Z-axis 

of the camera coordinates system.  

According to perspective projection rule, the projection of a polygon in image 

plane is also a polygon. The area of the model ROI in image plane is: 
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Where Z0 is the Z-axis coordinate of the model ROI in the camera coordinates system at 

the shape-model creating stage. 

For dynamic visions, the Z coordinate of the model object is updated.  The area of 

the model ROI in image plane is: 
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From shape model matching, 
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It can be obtained that  

                                                          0,1, cc ZsZ =                                         (B.23) 

From the relationship between the area and the Tz,i, it can be proven that: 

                                                          0ZsZ =                                                 (B.24) 
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where Z is the Z-axis translation of the tool coordinate system origin with respect to the 

end-effector coordinate system. 

Once we know Z coordinate, we can use the position parameters (u, v) to solve X 

and Y parameters by substituting equation (B.24) into equation (B.6): 

 

         



















−−−−−

+−−++−−−
=

−−−−−

+−−++−−−
=

))(())((

]))[((]))[((

))(())((

]))[((]))[((

32
1,

1231
1,

2132
1,

2231
1,

11

33
1,

1331
1,

2133
1,

2331
1,

11

32
1,

1231
1,

2132
1,

2231
1,

11

33
1,

2332
1,

1233
1,

1332
1,

22

r
f

u
rr

f
v

rr
f

v
rr

f
u

r

tZr
f

u
rr

f
v

rtZr
f

u
rr

f
u

r
Y

r
f

u
rr

f
v

rr
f

v
rr

f
u

r

tZr
f

v
rr

f
u

rtZr
f

u
rr

f
v

r
X

oooo

x
oo

y
oo

oooo

y
oo

x
oo

             (B.25) 

So far, the four parameters X, Y, Z and α are available for 3D pose.  The pose of 

the object with respect to the end-effector system is: 
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So now we can implement pose-based visual servoing for the system. 

B.3.Visual Servo Controller Design   

Given an object pose with respect to the end-effector coordinate system, it is 

straightforward to directly implement target tracking. Let *
o

e p  be a desired pose, which is 
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constant.  It is only translated from the origin of the end-effector coordinate system along 

its Z-axis without any orientation.  It also means that the end-effector is aligned with the 

object and ready for grasping.  So in this pose, the only value is the z-axis translation c, 

which is defined 3 inch.  *
o

e p  is like this: 
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From the pose determination in Chapter 4, the actual pose of the object in respect to the 

end-effector coordinate system is: 
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The pose error is defined as: 
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e

o
e
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Since the orientation is only around Z-axis, we might as well represent the rotation in 

terms of the unit vector ẑ and rotation angle θ̂ , we can define 

                                                            zk ˆ*ˆ
1θ−=Ω                                                    (B.30)             

                                                            etkT *2−=                                                 (B.31) 

where γθ =ˆ ,    ][ cTTTt zyxe −= , k1 and k2 are proportional constants. 
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The purpose of the visual servo is to produce velocity commands to drive the 

robot to a desired pose automatically.  As shown in figure B.4, there are two different 

control modes to drive the manipulator.  When the object is not in the scene of the end-

effector mounted camera, the telemanipulation operation can transmit control commands 

through input device. Once the target is seen by the camera and the relative pose between 

the camera and the object is available, visual servo will take effect to generate control 

commands.  These two control modes can be switched easily.  

B.4. Tele-autonomy Design   

Our telerobot-operation experience revealed that a typical ADL task is composed 

of a few motor behaviors ( sub-tasks), namely looking_for goal, move_to_goal, 

align_with_goal, as shown in figure B.5.                                                                                         

 

 

 

 

 

 

 

 

Figure B.5 Tele-autonomy Illustration 
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